New beyond-mean-field theories: examination of the potential shell closures at N=32 or 34.

Phys Rev Lett

Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

Published: August 2007

A beyond-mean-field theory of new generation has been developed and applied for the first time to discuss the controversial N=32 and/or N=34 shell closures and the puzzling behavior of the transition probabilities from the ground to the first 2(+) state in the titanium isotopes. In the numerical applications, the finite range density dependent Gogny interaction has been used. As compared with the experimental data for several calcium, titanium, and chromium isotopes, we obtain a good agreement for the excitation energies and a reasonable one for the transition probabilities. Our calculations support a shell closure for N=32 but not for N=34.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.99.062501DOI Listing

Publication Analysis

Top Keywords

shell closures
8
transition probabilities
8
beyond-mean-field theories
4
theories examination
4
examination potential
4
potential shell
4
closures n=32
4
n=32 beyond-mean-field
4
beyond-mean-field theory
4
theory generation
4

Similar Publications

Despite being studied for almost two centuries, aromaticity has always been a controversial concept. We previously proposed a unified aromatic rule for π-conjugated systems by two-dimensional (2D) superatomic-molecule theory, where benzenoid rings are treated as period 2 2D superatoms (3π-N, 4π-O, 5π-F, 6π-Ne) and, further, bond to form 2D superatomic molecules. Herein, to build a 2D periodic table, we further extend the theory to period 3 (7π-P, 8π-S, 9π-Cl, 10π-Ar) and period 1 (1π-H, 2π-He) elements.

View Article and Find Full Text PDF

Alleviation of drought stress in tomato by foliar application of seafood waste extract.

Sci Rep

December 2024

Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia.

To manage the adverse effects of garbage pollution and avoid using chemicals, a natural extract of seafood shells was obtained and explored for its beneficial role. Physical characterization highlighted that its active compounds correspond to chitin and its derivative, chitosan. The ability of the extracted biostimulant to foster tomato tolerance was tested on drought-stressed plants.

View Article and Find Full Text PDF

Tailoring Superatomic Stability with Transition Metals in Silicon Cages: Shrinking to M@Si (M = Re, Os, Ir).

J Phys Chem Lett

November 2024

Department of Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama 223-8522, Japan.

The design of materials with intriguing electronic properties is crucial for advancing nanoscale technologies, where precise control over atomic structure and electronic behavior is essential. Metal-encapsulating silicon cage superatoms (SAs) provide a new paradigm for molecular-scale material design, allowing fine-tuning of both structure and electronic characteristics. The formation of superatoms mimicking halogens, noble gases, and alkali metals has been well-studied, particularly with M@Si, where early transition metals from groups 3 to 5 stabilize within a Si cage, achieving a 68-electron configuration.

View Article and Find Full Text PDF
Article Synopsis
  • * The new mass data, with a precision around 1 keV/c², supports the robustness of the N=50 neutron shell closure and enables comparisons with advanced theoretical models for understanding nuclear properties.
  • * The study also highlights the challenges faced by theoretical approaches, like ab initio calculations and density functional theory, in accurately predicting ground-state properties in the silver isotopic chain near the proton dripline.
View Article and Find Full Text PDF

Dual Anticorrosive and Self-healing Coating Based on Multiresponsive Polyaniline Porous Microspheres.

Langmuir

October 2024

The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China.

In this work, a smart self-healing coating with long-term anticorrosion ability was developed based on multiresponsive polyaniline (PANI) porous microspheres. The polyaniline porous microspheres loaded with corrosion inhibitor (benzotriazole, BTA) was prepared by the emulsion template method and photopolymerization. The BTA loaded in the polyaniline microspheres acted as a corrosion inhibitor, while the polyaniline in the shell performed the multiple functions of corrosion inhibition, pH-responsive and photoresponsive release, and photothermal conversion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!