Synovial fluid potentially contains markers for early diagnosis and disease progression in degenerative joint diseases such as osteoarthritis. Here, a method is described for profiling endogenous peptides in human synovial fluid, using ultrafiltration, solid-phase extraction, nanoscale liquid chromatography, and high-resolution mass spectrometry. Synovial fluid is characterized by its high viscosity, caused by the presence of the lubricant hyaluronic acid. The method proved to be capable of eliminating the high concentrations of hyaluronic acid, which appeared to be necessary to obtain satisfactory analytical performance, that is, within-day relative standard deviations of 5-15%, between-day relative standard deviations of 6-16%, a linear response of R2=0.994, a limit of detection in the femtomole range, and reproducible recoveries of 14-67%. With the developed method, in a synovial fluid sample from an osteoarthritis patient and a healthy control, in total, 501 peptides originating from 40 proteins were identified. Peptide cleavage products from six proteins that have been associated with osteoarthritis in earlier studies (collagen II, proteoglcycan 4, serum amyloid A, tubulin, vimentin, and Matrix Gla) could also be identified with our profiling method. The robustness of the method indicates that it can be applied in systems biology approaches for further studies on degenerative joint disease, eventually leading to a better understanding of the disease and its therapy, as well as the development of novel biomarkers to monitor these processes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr0704534DOI Listing

Publication Analysis

Top Keywords

synovial fluid
20
profiling endogenous
8
endogenous peptides
8
peptides human
8
human synovial
8
degenerative joint
8
hyaluronic acid
8
relative standard
8
standard deviations
8
method
6

Similar Publications

Synovial Fluid Markers and Extracellular Vesicles in Rheumatoid Arthritis.

Medicina (Kaunas)

November 2024

Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia.

In recent years, numerous potential prognostic biomarkers for rheumatoid arthritis (RA) have been investigated. Despite these advancements, clinical practice primarily relies on autoantibody tests-for rheumatoid factor (RF) and anti-citrullinated protein antibody (anti-CCP)-alongside inflammatory markers, such as the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP). Expanding the repertoire of diagnostic and therapeutic biomarkers is critical for improving clinical outcomes in RA.

View Article and Find Full Text PDF

: The early identification of infection-causing microorganisms through multiplex PCR panels enables prompt and targeted antibiotic therapy. This study aimed to assess the performance of the BioFire Joint Infection Panel (BF-JIP) in analysing non-synovial fluid samples. : We conducted a retrospective cohort study at Trieste University Hospital, Italy, on hospitalised adults with non-synovial fluid samples tested by both BF-JIP and traditional culture methods (November 2022-April 2024).

View Article and Find Full Text PDF

Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondrial dysfunction leads to chondrocyte aging, contributing to osteoarthritis (OA) and it remains uncertain if mesenchymal stem cells (MSCs) can help restore mitochondrial function in chondrocytes or reverse OA progression.
  • The study utilized mitochondria-rich extracellular vesicles (MEV) from stem cells to determine their impact on both healthy and stressed human articular chondrocytes in vitro, and further tested their effects in OA rats.
  • Findings revealed that MEV could enter chondrocytes, reduce oxidative stress markers, enhance mitochondrial function, and effectively reduce cartilage degeneration in OA rats, suggesting a potential therapeutic approach for OA management.
View Article and Find Full Text PDF

Collagen/polyvinyl alcohol scaffolds combined with platelet-rich plasma to enhance anterior cruciate ligament repair.

Biomater Adv

December 2024

College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China. Electronic address:

In anterior cruciate ligament (ACL) repair methods, the continuous enzymatic erosion of synovial fluid can impede healing and potentially lead to repair failure, as well as exacerbate articular cartilage wear, resulting in joint degeneration. Inspired by the blood clot during medial collateral ligament healing, we developed a composite scaffold comprising collagen (1 %, w/v) and polyvinyl alcohol (5 %, w/v) combined with platelet-rich plasma (PRP). The composite scaffold provides a protective barrier against synovial erosion for the ruptured ACL, while simultaneously facilitating tissue repair, thereby enhancing the efficacy of ACL repair techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!