The aim of the work was the evaluation of different PCR-based methods to found an appropriate identification and typing strategy for environmental enterococci. Environmental enterococci were isolated mainly from surface- and waste-waters. Species identification was provided by combination of phenotypic (Micronaut System, Merlin) and molecular detection methods (fluorescent ITS-PCR, ddl-PCR, REP-PCR, AFLP). Very similar results were observed among molecular methods, however several discrepancies were recognized during comparison of molecular and biochemical identification. Seven enterococcal species (E. faecium, E. hirae, E. casseliflavus, E. mundtii, E. faecalis, E. durans and E. gallinarum) were identified within 166 environmental isolates. The results obtained in this work attest the importance of PCR-based methods for identification and typing of environmental enterococci. The fluorescent ITS-PCR (fITS-PCR) showed the best results in order to identify the enterococci strains, the method used the automated capillary electrophoresis to separate the PCR products in a very rapid and precise way. The AFLP method was suitable to identify and characterize the isolates, while the REP-PCR can be used for species identification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10482-007-9193-z | DOI Listing |
Heliyon
January 2025
Department of Environmental Sciences, Southern Illinois University Edwardsville, 44 Circle Drive SW 2145, PO Box 1099, Edwardsville, IL, USA, 62026.
The designated uses of lakes connect individuals to the natural environment, but some can expose recreational users to pathogens associated with fecal contamination that cause waterborne illnesses. Routine monitoring of fecal indicators in surface waters helps identify and track sources of fecal contamination to protect public health. We examined fecal indicators ( and enterococci) and factors influencing recreational freshwater quality.
View Article and Find Full Text PDFFront Microbiol
December 2024
Shenzhen Centre for Disease Control and Prevention, Shenzhen, China.
Background: The emergence of , which can confer resistance to phenicols and oxazolidinones in spp., poses a growing public health threat.
Methods: 102 -positive enterococci (OPEs) including various species were isolated from feces of 719 healthy volunteers in a Shenzhen community, China.
Int J Microbiol
December 2024
Department of Nutrition, Faculty of Health Sciences, Lúrio University, Marrere Campus, Nampula 4250, Mozambique.
Fermented foods, particularly fermented dairy products, offer significant health benefits but also present serious concerns. Probiotic bacteria, such as lactic acid bacteria (LAB), found in these foods have been strongly linked to the selection and dissemination of antibiotic resistance genes (ARGs). This study aims to examine the potential risks associated with fermented foods, despite their importance in human nutrition, by analyzing the entire production chain from raw material acquisition to storage.
View Article and Find Full Text PDFWater Res
December 2024
CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia. Electronic address:
Microbial source tracking (MST) is a critical tool for identifying sources of human and animal fecal pollution in aquatic environments. To enhance human fecal pollution tracking, this study evaluated the performance characteristics of pBI143, a cryptic plasmid recently identified for potential MST applications. Nucleic acid samples from ten animal species were screened for pBI143, revealing its presence in a small number of pigs, cows, dogs, cats, and flying fox fecal samples.
View Article and Find Full Text PDFJ Dairy Sci
December 2024
CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal; cE3c - Centre for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal.
The widespread use of Recycled Manure Solids (RMS) as cow bedding material is not without risks, since cattle manure may act as a vehicle for pathogenic and antimicrobial resistant bacteria dissemination. Thus, our aim was to evaluate RMS-supplemented with a pine biochar produced in Portugal as a new cow bedding material, since the use of biochar has been shown to have the potential to mitigate the impact of relevant bacterial species when added to animal manure microbiota. Our experimental setup consisted on fresh RMS samples that were collected on a commercial dairy farm and placed in naturally-ventilated containers for a total of 4 groups: 1-non-supplemented RMS; 2-RMS supplemented with 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!