Nature
Department of Biochemistry, Room 4100, 15 N. Medical Drive East, University of Utah, Salt Lake City, Utah 84112-5650, USA.
Published: October 2007
The ESCRT (endosomal sorting complex required for transport) pathway is required for terminal membrane fission events in several important biological processes, including endosomal intraluminal vesicle formation, HIV budding and cytokinesis. VPS4 ATPases perform a key function in this pathway by recognizing membrane-associated ESCRT-III assemblies and catalysing their disassembly, possibly in conjunction with membrane fission. Here we show that the microtubule interacting and transport (MIT) domains of human VPS4A and VPS4B bind conserved sequence motifs located at the carboxy termini of the CHMP1-3 class of ESCRT-III proteins. Structures of VPS4A MIT-CHMP1A and VPS4B MIT-CHMP2B complexes reveal that the C-terminal CHMP motif forms an amphipathic helix that binds in a groove between the last two helices of the tetratricopeptide-like repeat (TPR) of the VPS4 MIT domain, but in the opposite orientation to that of a canonical TPR interaction. Distinct pockets in the MIT domain bind three conserved leucine residues of the CHMP motif, and mutations that inhibit these interactions block VPS4 recruitment, impair endosomal protein sorting and relieve dominant-negative VPS4 inhibition of HIV budding. Thus, our studies reveal how the VPS4 ATPases recognize their CHMP substrates to facilitate the membrane fission events required for the release of viruses, endosomal vesicles and daughter cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature06172 | DOI Listing |
Biochem Biophys Res Commun
February 2025
Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:
In budding yeast, endosomal sorting complex required for transport (ESCRT) mediates microautophagy by vacuolar membrane invagination into the vacuolar lumen, followed by Vps4-assisted membrane constriction and abscission. Here, we show that ESCRT elicits vacuolar fission in the absence of Vps4 after nutrient starvation, although vacuolar fusion is facilitated in wild-type cells in these conditions. ESCRT mediated vacuolar membrane invagination in vps4Δ cells, thereby causing vacuolar fission.
View Article and Find Full Text PDFmBio
February 2025
Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
Unlabelled: Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon .
View Article and Find Full Text PDFbioRxiv
September 2024
Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA.
The ESCRT pathway's AAA+ ATPase, Vps4p, remodels ESCRT-III complexes to drive membrane fission. Here, we use peptide binding assays to further the understanding of substrate specificity and the mechanism of autoinhibition. Our results reveal unexpected sequence preference to the substrate binding groove and an elegant mechanism of regulation that couples localization to substrate with release from autoinhibition.
View Article and Find Full Text PDFbioRxiv
February 2024
National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
Endosomal Sorting Complexes Required for Transport (ESCRT) play key roles in protein sorting between membrane-bounded compartments of eukaryotic cells. Homologs of many ESCRT components are identifiable in various groups of archaea, especially in Asgardarchaeota, the archaeal phylum that is currently considered to include the closest relatives of eukaryotes, but not in bacteria. We performed a comprehensive search for ESCRT protein homologs in archaea and reconstructed ESCRT evolution using the phylogenetic tree of Vps4 ATPase (ESCRT IV) as a scaffold, using sensitive protein sequence analysis and comparison of structural models to identify previously unknown ESCRT proteins.
View Article and Find Full Text PDFPLoS Pathog
June 2024
Institute of Virology, Ulm University Medical Center, Ulm, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.