Calcium levels in the presynaptic nerve terminal are altered by several pathways, including voltage-gated Ca(2+) channels, the Na(+)/Ca(2+) exchanger, Ca(2+)-ATPase, and the mitochondria. The influx pathway for homeostatic control of [Ca(2+)](i) in the nerve terminal has been unclear. One approach to detecting the pathway that maintains internal Ca(2+) is to test for activation of Ca(2+) influx following Ca(2+) depletion. Here, we demonstrate that a constitutive influx pathway for Ca(2+) exists in presynaptic terminals to maintain internal Ca(2+) independent of voltage-gated Ca(2+) channels and Na(+)/Ca(2+) exchange, as measured in intact isolated nerve endings from mouse cortex and in intact varicosities in a neuronal cell line using fluorescence spectroscopy and confocal imaging. The Mg(2+) and lanthanide sensitivity of the influx pathway, in addition to its pharmacological and short hairpin RNA sensitivity, and the results of immunostaining for transient receptor potential (TRP) channels indicate the involvement of TRPC channels, possibly TRPC5 and TRPC1. This constitutive Ca(2+) influx pathway likely serves to maintain synaptic function under widely varying levels of synaptic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M706002200DOI Listing

Publication Analysis

Top Keywords

influx pathway
20
ca2+ influx
12
voltage-gated ca2+
12
ca2+ channels
12
channels na+/ca2+
12
ca2+
10
transient receptor
8
presynaptic nerve
8
nerve endings
8
independent voltage-gated
8

Similar Publications

Embryonic Mammary Gland Morphogenesis.

Adv Exp Med Biol

January 2025

Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.

Embryonic mammary gland development unfolds with the specification of bilateral mammary lines, thereafter progressing through placode, bud, and sprout stages before branching morphogenesis. Extensive epithelial-mesenchymal interactions guide morphogenesis from embryogenesis to adulthood. Two distinct mesenchymal tissues are involved, the primary mammary mesenchyme that harbors mammary inductive capacity, and the secondary mesenchyme, the precursor of the adult stroma.

View Article and Find Full Text PDF

The involvement of neurons in the peripheral nervous system is crucial for bone regeneration. Mimicking extracellular matrix cues provides a more direct and effective strategy to regulate neuronal activity and enhance bone regeneration. However, the simultaneous coupling of the intrinsic mechanical-electrical microenvironment of implants to regulate innervated bone regeneration has been largely neglected.

View Article and Find Full Text PDF

Senescent bone tissue displays a pathological imbalance characterized by decreased angiogenesis, disrupted bioelectric signaling, ion dysregulation, and reduced stem cell differentiation. Once bone defects occur, this pathological imbalance makes them difficult to repair. An innovative synergistic therapeutic strategy is utilized to reverse these pathological imbalances via a conductive hydrogel doped with magnesium ion (Mg)-modified black phosphorus (BP).

View Article and Find Full Text PDF

Contrary to the evidence supporting the role for insulin in stimulating uterine contraction, only a limited number of studies have highlighted the inhibitory effect of insulin on myometrial contractions in human and rodent. A hypothetical narrative review of the current literature was conducted, revealing the current literature and shows the potential inhibitory effects of insulin on myometrial contractility. These inhibitory mechanisms include activation of adenylyl cyclase signaling pathways, an increase in cAMP production, a decrease in Ca influx and cytosolic Ca, hyperpolarization of the cell membrane, and stimulation of NO synthesis.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!