DyP, a unique dye-decolorizing enzyme from the fungus Thanatephorus cucumeris Dec 1, has been classified as a peroxidase but lacks homology to almost all other known plant peroxidases. The primary structure of DyP shows moderate sequence homology to only two known proteins: the peroxide-dependent phenol oxidase, TAP, and the hypothetical peroxidase, cpop21. Here, we show the first crystal structure of DyP and reveal that this protein has a unique tertiary structure with a distal heme region that differs from that of most other peroxidases. DyP lacks an important histidine residue known to assist in the formation of a Fe4+ oxoferryl center and a porphyrin-based cation radical intermediate (compound I) during the action of ubiquitous peroxidases. Instead, our tertiary structural and spectrophotometric analyses of DyP suggest that an aspartic acid and an arginine are involved in the formation of compound I. Sequence analysis reveals that the important aspartic acid and arginine mentioned above and histidine of the heme ligand are conserved among DyP, TAP, and cpop21, and structural and phylogenetic analyses confirmed that these three enzymes do not belong to any other families of peroxidase. These findings, which strongly suggest that DyP is a representative heme peroxidase from a novel family, should facilitate the identification of additional new family members and accelerate the classification of this novel peroxidase family.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M706996200DOI Listing

Publication Analysis

Top Keywords

dyp
8
dyp unique
8
unique dye-decolorizing
8
heme peroxidase
8
peroxidase family
8
peroxidases dyp
8
structure dyp
8
aspartic acid
8
acid arginine
8
peroxidase
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!