The mechanisms by which GM-CSF mediates bacterial clearance and inflammation during mycobacterial infection are poorly understood. The objective of this work was to determine how GM-CSF alters pulmonary mycobacterial infection in vivo. Differences in GM-CSF levels in the lungs of normal mice (GM(+/+)), transgenic GM-CSF-deficient (GM-CSF(-/-)), and transgenic mice with high GM-CSF expression only in lung epithelial cells (SP-C-GM-CSF(+/+)/GM(-/-)) did not affect pulmonary infection rates caused by either the attenuated Mycobacterium bovis BCG or the virulent Mycobacterium tuberculosis H37Rv. However, in contrast to findings with BCG, all GM-CSF(-/-) and SP-C-GM-CSF(+/+)/GM(-/-) mice succumbed prematurely to virulent H37Rv. Granuloma formation was impaired in both GM-CSF(-/-) and SP-C-GM-CSF(+/+)/GM(-/-) mice regardless of mycobacterial virulence. However, H37Rv-infected GM-CSF(-/-) mice suffered broncho-alveolar destruction, edema, and necrosis while only short-lived granulomas were observed in SP-C-GM-CSF(+/+)/GM(-/-) mice. Bone marrow-derived macrophages, but not dendritic cells of SP-C-GM-CSF(+/+)/GM(-/-) mice, were hypo-responsive to mycobacterial infection. Surfactant protein levels were differentially influenced by BCG and H37Rv. We conclude that GM-CSF has an essential protective role first in preserving alveolar structure and second in regulating macrophages and dendritic cells to facilitate containment of virulent mycobacteria in pulmonary granulomas. However, precise regulation of lung GM-CSF is vital to effective control of M. tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3702386PMC
http://dx.doi.org/10.1016/j.tube.2007.08.009DOI Listing

Publication Analysis

Top Keywords

sp-c-gm-csf+/+/gm-/- mice
16
mycobacterial infection
12
cells sp-c-gm-csf+/+/gm-/-
8
gm-csf-/- sp-c-gm-csf+/+/gm-/-
8
macrophages dendritic
8
dendritic cells
8
mice
7
gm-csf
6
sp-c-gm-csf+/+/gm-/-
5
granulocyte-macrophage colony
4

Similar Publications

The mechanisms by which GM-CSF mediates bacterial clearance and inflammation during mycobacterial infection are poorly understood. The objective of this work was to determine how GM-CSF alters pulmonary mycobacterial infection in vivo. Differences in GM-CSF levels in the lungs of normal mice (GM(+/+)), transgenic GM-CSF-deficient (GM-CSF(-/-)), and transgenic mice with high GM-CSF expression only in lung epithelial cells (SP-C-GM-CSF(+/+)/GM(-/-)) did not affect pulmonary infection rates caused by either the attenuated Mycobacterium bovis BCG or the virulent Mycobacterium tuberculosis H37Rv.

View Article and Find Full Text PDF

Mutation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene by homologous recombination caused alveolar proteinosis in mice. To further discern the role of GM-CSF in surfactant homeostasis, the synthesis of GM-CSF was directed to the respiratory epithelium of GM-CSF-hull mutant mice (GM-/-) with a chimeric gene expressing GM-CSF under the control of the promoter from the human surfactant protein-C (SP-C) gene. Transgenic mice bearing the SP-C-GM-CSF construct (SP-C-GM+) were bred to GM-/- mice resulting in complete correction of alveolar proteinosis in bitransgenic GM-/-, SP-C-GM+ mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!