Involvement of sulfhydryl oxidase QSOX1 in the protection of cells against oxidative stress-induced apoptosis.

Exp Cell Res

Université de Franche Comté, U.F.R. Sciences et Techniques, E.A.3922 Equipe Estrogènes, Expression génique et Pathologies du Système Nerveux Central, IFR 133 Ingénierie et Biologie Cellulaire et Tissulaire, Besançon cedex, France.

Published: November 2007

The QSOX1 protein, belonging to a new class of FAD-linked Quiescin/Sulfhydryl oxidase, catalyzes disulfide bond formation. To give new insight into the biological function of QSOX1, we studied its involvement in oxidative stress-induced apoptosis and cell recovery of PC12 cells. By real time RT-PCR and flow cytometric analysis, we show that the QSOX1 mRNA and protein levels increased late after the beginning of oxidative treatment and were sustained for 72 h. These levels were still high when the PC12 cells were not dying but had resumed proliferation. The kinetics of QSOX1 expression suggest a more protective effect of QSOX1 rather than an involvement of this protein in apoptosis. Human breast cancer MCF-7 cell lines overexpressing the guinea pig QSOX1 protein submitted to the same treatments appeared less sensitive to cell death than the MCF-7 control cells. The protective effect is partly due to a preservation of the mitochondrial polarization generally lost after an oxidative stress. These results strengthen our hypothesis of a protective role of QSOX1 against apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2007.09.003DOI Listing

Publication Analysis

Top Keywords

qsox1
8
oxidative stress-induced
8
stress-induced apoptosis
8
qsox1 protein
8
pc12 cells
8
involvement sulfhydryl
4
sulfhydryl oxidase
4
oxidase qsox1
4
qsox1 protection
4
cells
4

Similar Publications

(-)-Epigallocatechin-3-Gallate and Quercetin Inhibit Quiescin Sulfhydryl Oxidase 1 Secretion from Hepatocellular Carcinoma Cells.

Antioxidants (Basel)

January 2025

State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agricultural University, Hefei 230036, China.

Liver cancer is one of the most prevalent cancers worldwide. The first-line therapeutic drug sorafenib offers only a moderate improvement in patients' conditions. Therefore, an approach to enhancing its therapeutic efficacy is urgently needed.

View Article and Find Full Text PDF

Currently, the pathogenesis of epilepsy remains poorly understood. Although there is evidence indicating that iron death might play a significant role, its molecular immunological mechanisms are largely unknown. This study was designed to analyze and explore the molecular mechanisms and immunological characteristics of iron death-related genes in epilepsy.

View Article and Find Full Text PDF

Identification of common diagnostic genes and molecular pathways in endometriosis and systemic lupus erythematosus by machine learning approach and in vitro experiment.

Int J Med Sci

January 2025

Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.

Growing research suggests that endometriosis and systemic lupus erythematosus (SLE) are both chronic inflammatory diseases and closely related, but no studies have explored their common molecular characteristics and underlying mechanisms. Based on GEO datasets, differentially expressed genes in the endometriosis cohort and the SLE cohort were screened using Limma and weighted gene co-expression network analysis (WGCNA), and prediction signatures were constructed using LASSO logistic regression analysis, respectively. Four co-diagnostic genes (PMP22, QSOX1, REV3L, SP110) were identified for endometriosis and SLE.

View Article and Find Full Text PDF

: Quiescin Sulfhydryl Oxidase 1 (QSOX1) is an enzyme that catalyzes the oxidation of free thiols to generate disulfide bonds in a variety of proteins, including the cell surface and extracellular matrix. QSOX1 has been reported to be upregulated in a number of cancers, and the overexpression of QSOX1 has been correlated with aggressive cancers and poor patient prognosis. Glioblastoma (GBM) brain cancer has been practically impossible to treat effectively, with cells that rapidly invade normal brain tissue and escape surgery and other treatment.

View Article and Find Full Text PDF

QSOX1 facilitates dormant esophageal cancer stem cells to evade immune elimination via PD-L1 upregulation and CD8 T cell exclusion.

Proc Natl Acad Sci U S A

October 2024

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, People's Republic of China.

Article Synopsis
  • - Dormant cancer stem cells (DCSCs) play a crucial role in tumor recurrence and metastasis due to their resistance to chemotherapy and ability to evade the immune system, mainly through enhanced PD-L1 signaling and the influence of quiescin sulfhydryl oxidase 1 (QSOX1).
  • - QSOX1, produced by quiescent fibroblasts, boosts PD-L1 expression in DCSCs and creates an environment that excludes CD8 T cells, thus supporting immune evasion.
  • - Targeting QSOX1 with Ebselen, in combination with anti-PD-1 and chemotherapy, shows promise for successfully eradicating dormant DCSCs and improving patient responses to treatment. *
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!