Objective: The aim of the present study was to determine which isoform of the cyclooxygenase (COX) enzyme plays a role in the neuronal nitric oxide synthase (nNOS) activation caused by nitroglycerin (NTG), in the most caudal part of the trigeminal caudal nucleus (TNC) of the rat.

Background: Nitric oxide donor, NTG, can trigger migraine attack in migraineurs, but not in healthy persons. In rats, subcutaneous administration of NTG (10 mg/kg) increases significantly the number of nNOS-immunoreactive neurons in the TNC after 4 hours, which could be attenuated by acetyl-salicylate (Aspirin), a nonselective COX-inhibitor.

Methods: SPRD rats were divided into 3 groups: (1) control group (no drug administration), (2) NS398 (selective COX-2 inhibitor) administration (1, 3, or 5 mg/kg), and (3) SC560 (selective COX-1 inhibitor) administration (1, 5, or 10 mg/kg). Thirty minutes after drug administration, the animals received NTG (10 mg/kg) or placebo injection. Four hours later the animals were transcardially perfused and the cervical part of the TNC was removed for immunohistochemistry. Results.-The selective COX-2 inhibitor NS398 in contrast to the selective COX-1 inhibitor SC560 attenuates the NTG-induced nNOS expression dose-dependently.

Conclusion: These findings suggest that metabolites deriving from COX-2 (but not COX-1) may be the most important factors in the NTG-induced nNOS expression. These data could help to better understand the pathogenesis of headaches and the action of antimigraine drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1526-4610.2006.00721.xDOI Listing

Publication Analysis

Top Keywords

cox-2 inhibitor
12
caudal trigeminal
8
nitric oxide
8
ntg mg/kg
8
drug administration
8
selective cox-2
8
inhibitor administration
8
administration mg/kg
8
selective cox-1
8
cox-1 inhibitor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!