Mammalian cells contain two isoforms of the type II PI4K (phosphoinositol 4-kinase), PI4KIIalpha and beta. These 55 kDa proteins have highly diverse N-terminal regions (approximately residues 1-90) but conserved catalytic domains (approximately from residue 91 to the C-termini). Nearly the entire pool of PI4KIIalpha behaves as an integral membrane protein, in spite of a lack of a transmembrane domain. This integral association with membranes is due to palmitoylation of a cysteine-rich motif, CCPCC, located within the catalytic domain. Although the CCPCC motif is conserved in PI4KIIbeta, only 50% of PI4KIIbeta is membrane-associated, and approximately half of this pool is only peripherally attached to the membranes. Growth factor stimulation or overexpression of a constitutively active Rac mutant induces the translocation of a portion of cytosolic PI4KIIbeta to plasma membrane ruffles and stimulates its activity. Here, we demonstrate that membrane-associated PI4KIIbeta undergoes two modifications, palmitoylation and phosphorylation. The cytosolic pool of PI4KIIbeta is not palmitoylated and has much lower lipid kinase activity than the membrane-associated kinase. Although only membrane-associated PI4KIIbeta is phosphorylated in the unique N-terminal region, this modification apparently does not influence its membrane binding or activity. A series of truncation mutants and alpha/beta chimaeras were generated to identify regions responsible for the isoform-specific behaviour of the kinases. Surprisingly, the C-terminal approx. 160 residues, and not the diverse N-terminal regions, contain the sites that are most important in determining the different solubilities, palmitoylation states and stimulus-dependent redistributions of PI4KIIalpha and beta.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BJ20070821 | DOI Listing |
J Biomol Struct Dyn
December 2024
School of Chemistry, University of Hyderabad, Hyderabad, India.
According to World Health Organization reports of the year 2022, nearly 242,000 people died from hepatitis C that causes liver cirrhosis and hepatocellular carcinoma. Phosphatidylinositol-4-kinase type III alpha (PI4KIIIα), a lipid kinase interacts with the hepatitis C virus non-structural 5 A protein (NS5A) to produce phosphoinositol-4-phosphate (PI4P), which enriches the hepatitis C virus replication complex. Patients with hepatitis C virus infection in the liver have been associated with increased levels of PI4P at the endoplasmic reticulum.
View Article and Find Full Text PDFBiochem Pharmacol
February 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510260, China. Electronic address:
Brain
October 2021
Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain.
Phosphoinositides are lipids that play a critical role in processes such as cellular signalling, ion channel activity and membrane trafficking. When mutated, several genes that encode proteins that participate in the metabolism of these lipids give rise to neurological or developmental phenotypes. PI4KA is a phosphoinositide kinase that is highly expressed in the brain and is essential for life.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2018
Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Japan. Electronic address:
Fission yeast Pik1p is one of three phosphatidylinositol 4-kinases associated with the Golgi complex, but its function is not fully understood. Deletion of pot1 causes telomere degradation and chromosome circularization. We searched for the gene which becomes synthetically lethal with pot1Δ.
View Article and Find Full Text PDFAdv Biol Regul
January 2016
Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy. Electronic address:
During recent decades, PI(4)P (phosphoinositol-4-phosphate) has been described as a key regulator of a wide range of cellular functions such as organelle biogenesis, lipid metabolism and distribution, membrane trafficking, ion channels, pumps, and transporter activities. In this review we will focus on the multiple mechanisms that regulate PI(4)P homeostasis ranging from those responsible for the spatial distribution of the PI4 kinases and PI(4)P phosphatase to those controlling their enzymatic activity or the delivery/presentation of the substrate, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!