Acoustic travel-time tomography allows one to reconstruct temperature and wind velocity fields in the atmosphere. In a recently published paper [S. Vecherin et al., J. Acoust. Soc. Am. 119, 2579 (2006)], a time-dependent stochastic inversion (TDSI) was developed for the reconstruction of these fields from travel times of sound propagation between sources and receivers in a tomography array. TDSI accounts for the correlation of temperature and wind velocity fluctuations both in space and time and therefore yields more accurate reconstruction of these fields in comparison with algebraic techniques and regular stochastic inversion. To use TDSI, one needs to estimate spatial-temporal covariance functions of temperature and wind velocity fluctuations. In this paper, these spatial-temporal covariance functions are derived for locally frozen turbulence which is a more general concept than a widely used hypothesis of frozen turbulence. The developed theory is applied to reconstruction of temperature and wind velocity fields in the acoustic tomography experiment carried out by University of Leipzig, Germany. The reconstructed temperature and velocity fields are presented and errors in reconstruction of these fields are studied.

Download full-text PDF

Source
http://dx.doi.org/10.1121/1.2756798DOI Listing

Publication Analysis

Top Keywords

temperature wind
16
wind velocity
16
stochastic inversion
12
velocity fields
12
reconstruction fields
12
time-dependent stochastic
8
inversion tdsi
8
velocity fluctuations
8
spatial-temporal covariance
8
covariance functions
8

Similar Publications

Background/context: Aneurysmal subarachnoid hemorrhage (aSAH) is a sudden and potentially serious event. Recognized risk factors of aSAH include smoking, high blood pressure, and alcohol consumption. Some studies have reported associations between risk of aSAH and climatic conditions, but no consensus exists.

View Article and Find Full Text PDF

Radiation Damage Mitigation in FeCrAl Alloy at Sub-Recrystallization Temperatures.

Materials (Basel)

December 2024

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16803, USA.

Traditional defect recovery methods rely on high-temperature annealing, often exceeding 750 °C for FeCrAl. In this study, we introduce electron wind force (EWF)-assisted annealing as an alternative approach to mitigate irradiation-induced defects at significantly lower temperatures. FeCrAl samples irradiated with 5 MeV Zr ions at a dose of 10 cm were annealed using EWF at 250 °C for 60 s.

View Article and Find Full Text PDF

In some occasions, outdoor steel structures like wind towers, bridges, winter sports facilities, and so on are subjected to extreme environmental conditions with the presence of ice and/or with below-zero temperatures. Sometimes in these situations, surface protection of the steel structure is usually designed using hot-dip galvanizing to improve its durability. In these special circumstances, the structure's connections are also exposed to adverse climatic agents.

View Article and Find Full Text PDF

(L.) Skeels is a unique endemic species in Morocco, renowned for its ecological characteristics and socio-economic importance. In Morocco, recent years have seen an exacerbation of the harmful effects of climate change, leading to an alarming decline in the natural regeneration of this species in its original habitats.

View Article and Find Full Text PDF

In this comprehensive analysis of Chile's air quality dynamics spanning 2016 to 2021, the utilization of data from the National Air Quality Information System (SINCA) and its network of monitoring stations was undertaken. Quintero, Puchuncaví, and Coyhaique were the focal points of this study, with the primary objective being the construction of predictive models for sulfur dioxide (SO2), fine particulate matter (PM2.5), and coarse particulate matter (PM10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!