In the present study we investigate pyrido[1,2-a]indole- and pyrrolo[1,2-a]indole-based quinones capable of forming quinone methide and vinyl quinone species upon reduction and leaving group elimination. Our goals were to determine the influence of the 6-membered pyrido and the 5-membered pyrrolo fused rings on quinone methide and vinyl quinone formation and fate as well as on cytostatic and cytotoxic activity. We used the technique of Spectral Global Fitting to study the fleeting quinone methide intermediate directly. Conclusions regarding quinone methide reactivity are that carbonyl O-protonation is required for nucleophile trapping and that the pKa value of this protonated species is near neutrality. The abnormally high protonated carbonyl pKa values are due to the formation of an aromatic carbocation species upon protonation. The fused pyrido ring promotes quinone methide and vinyl quinone formation but slows nucleophile trapping compared to the fused pyrrolo ring. These findings are explained by the presence of axial hydrogen atoms in the fused pyrido ring resulting in more steric congestion compared to the relatively flat fused pyrrolo ring. Consequently, pyrrolo[1,2-a]indole-based quinones exhibit more cytostatic activity than the pyrido[1,2-a]indole analogues due to their greater nucleophile trapping capability.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo070866oDOI Listing

Publication Analysis

Top Keywords

quinone methide
20
methide vinyl
12
vinyl quinone
12
nucleophile trapping
12
quinone
9
pyrrolo[12-a]indole-based quinones
8
quinone formation
8
fused pyrido
8
pyrido ring
8
fused pyrrolo
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!