Several biphasic systems giving rise to periodical Marangoni instability have been analyzed from the point of view of the physicochemical properties of the involved compounds. In each case, the compound at the origin of the oscillatory behavior has been identified: the reactant cetyltrimethylammonium bromide (CTAB) for the CTAB/picric acid (PH) system and the product of reaction dodecyl sulfate tetraalkylammonium (TAADS) for the sodium dodecyl sulfate/tetraalkylammonium bromide (SDS/TAAB) system. The properties of the latter system have been varied progressively by increasing the chain length of the tetraalkylammonium ion. Oscillations were observed whichever the direction of transfer (from water to dichloromethane and from dichloromethane to water). The comparison of the dynamic interfacial tension, recorded during transfer, to equilibrium measurements shows that the instability is favored when partition is highly in favor of the organic phase. The main criteria for the appearance of the instability are a high surface activity and a low interfacial adsorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la7018154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!