We report the fabrication of self-organized surfactant nanofibers containing platinum ions on a highly oriented pyrolytic graphite (HOPG) surface from mixed solutions of hexadecyltrimethylammonium hydroxide (C16TAOH) and hydrogen hexachloroplatinate (IV) (H2PtCl6). The fibrous surfactant self-assembly was stable in air, even after being soaked in water, in contrast to surfactant hemicylindrical micelles, which are stable only at graphite/solution interfaces. The results show that the graphite surface served as an essential template for the specific formation of fibrous surfactant self-assemblies. In addition, when surfactant nanofibers containing metal ions were treated with hydrazine, platinum nanoparticles concentrated in the nanofibers formed on the HOPG surface. We also prepared surfactant nanofibers containing gold ions on HOPG surfaces and formed gold nanoparticles in the nanofibers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la701020sDOI Listing

Publication Analysis

Top Keywords

surfactant nanofibers
12
hopg surface
8
fibrous surfactant
8
nanofibers
6
surfactant
6
self-organization surfactant-metal-ion
4
surfactant-metal-ion complex
4
complex nanofibers
4
nanofibers graphite
4
graphite surfaces
4

Similar Publications

Cellulose nanofiber-created air barrier enabling closed-cell foams prepared via oven-drying.

Carbohydr Polym

March 2025

Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, PR China. Electronic address:

Cellulose foams are renewable and biodegradable materials that are promising substitutes for plastic foams. However, the scale-up fabrication of cellulose foams is severely hindered by technological complexity and cost- and time-consuming drying processes. Here, we developed a facile and robust method to fabricate cellulose foams via oven-drying following surfactant-assisted mechanical foaming of cellulose nanofibers (CNFs).

View Article and Find Full Text PDF

Hydrophobic modification of cellulose nanofibers/bionic flower-like ZnO synergistically stabilized Pickering emulsion to enhance pesticide deposition.

Int J Biol Macromol

December 2024

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, PR China; China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin 300457, PR China. Electronic address:

Environmental issues arising from the low pesticide utilization rate make the development of environmentally friendly and low-cost pesticide carrier systems an urgent problem to be solved. Pickering emulsion systems have shown broad application prospects in pesticide delivery. In this study, dodecenyl succinic anhydride (DDSA) was used to hydrophobically modify cellulose nanofiber (D-CNF), and biomimetic flower-like zinc oxide (ZnO) particles were prepared by precipitation method at room temperature.

View Article and Find Full Text PDF

This study introduces a novel, sustainable method for synthesizing sub-5 nm palladium nanoparticles (PdNPs) and covalently binding them to chitosan nanofibers (CHITs) using fully oxidized dialdehyde cellulose (DAC). Notably, the DAC acts not only as a reducing and stabilizing agent for PdNPs, but also as a linker for their rapid and spontaneous covalent attachment to CHITs via Schiff base chemistry. This unique approach yields PdNPs with a narrow size distribution (4.

View Article and Find Full Text PDF

Efficient, electrochemical degradation of organic pollutants via nanofibrous Pt/Ir-RuO electrode with enhanced stability.

Chemosphere

December 2024

Department of Applied Organic Materials Engineering, Daejeon, 34134, South Korea. Electronic address:

A diverse range of surfactants and chelating agents are frequently used in industrial processes, especially in the decontamination of nuclear facilities for decommissioning. To treat and degrade these organic pollutants, electrooxidation (EO) has emerged as a cost-effective method. Along these lines, in this work, a nanofibrous electrode was constructed to facilitate efficient EO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!