An investigation of magnetic resonance (MR)-induced hot spots in a high-resolution human model is performed, motivated by safety aspects for the use of MR tomographs. The human model is placed in an MR whole body resonator that is driven in a quadrature excitation mode. The MR-induced hot spots are studied by varying the following: (1) the temporal specific absorption rate (SAR) mode ("steady imaging", "intermittent imaging"), (2) the simulation procedure (related to given power levels or to limiting temperatures), and (3) different thermal tissue properties including temperature-independent and temperature-dependent perfusion models. Both electromagnetic and thermodynamic simulations have been performed. For the electromagnetic modeling, a commercial finite-integration theory (FIT) code is applied. For the thermodynamic modeling, a time-domain finite-difference (FD) scheme is formulated that uses an explicit treatment of temperature gradient components. This allows a flux-vector-based implementation of heat transfer boundary conditions on cubical faces. It is shown that this FD scheme significantly reduces the staircase errors at thermal boundaries that are locally sloped or curved with respect to the cubical grid elements.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2007.893499DOI Listing

Publication Analysis

Top Keywords

mr-induced hot
12
hot spots
12
temperature gradient
8
human model
8
evaluation mr-induced
4
spots temporal
4
temporal sar
4
sar modes
4
modes time-dependent
4
time-dependent finite
4

Similar Publications

Effects of saccharide type and extended heating on the Maillard reaction and physicochemical properties of high-solid gelatin gels.

Food Chem

November 2024

Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China. Electronic address:

This research delves into the Maillard reaction (MR) in high-solid gelatin-saccharide mixtures consisting of 8% and 72% of allulose, fructose, or fructo-oligosaccharides, which were subjected to varied duration (0-60min) of thermal processing prior to gelation. Physicochemical properties of the gels, including color, chemical composition, protein crosslinking, mechanical strength, in-vitro digestibility and antioxidant activities, were characterized. At pH ∼5.

View Article and Find Full Text PDF

Purpose: To examine the possibility that MR-induced RF power deposition (SAR) and the resulting effects on temperature-dependent metabolic rates or perfusion rates might affect observed 18FDG signal in PET/MR.

Methods: Using numerical simulations of the SAR, consequent temperature increase, effect on rates of metabolism or perfusion, and [18FDG] throughout the body, we simulated the potential effect of maximum-allowable whole-body SAR for the entire duration of an hour-long PET/MR scan on observed PET signal for two different 18FDG injection times: one hour before onset of imaging and concurrent with the beginning of imaging. This was all repeated three times with the head, the heart, and the abdomen (kidneys) at the center of the RF coil.

View Article and Find Full Text PDF

An investigation of magnetic resonance (MR)-induced hot spots in a high-resolution human model is performed, motivated by safety aspects for the use of MR tomographs. The human model is placed in an MR whole body resonator that is driven in a quadrature excitation mode. The MR-induced hot spots are studied by varying the following: (1) the temporal specific absorption rate (SAR) mode ("steady imaging", "intermittent imaging"), (2) the simulation procedure (related to given power levels or to limiting temperatures), and (3) different thermal tissue properties including temperature-independent and temperature-dependent perfusion models.

View Article and Find Full Text PDF

In the 'doubling-dose' method currently used in genetic risk evaluation, two principle assumptions are made and these are: (1) there is proportionality between spontaneous and induced mutations and (2) the lesions that lead to spontaneous and induced mutations are essentially similar. The studies reported in this paper were directed at examining the validity of these two assumptions in Drosophila. An analysis was made of the distribution of sex-linked recessive lethals induced by MR, one of the well-studied mutator systems in Drosophila.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!