Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is well established that reciprocal modulation exists between the central nervous system and immune system. Interleukin (IL)-1beta, a proinflammatory cytokine secreted at early stage of immune challenge, has been recognized as one of the informational molecules in immune-to-brain communication. However, how this large molecule is transmitted to the brain is still unknown. In recent years it has been reported that the cranial nerves, especially the vagus, may play a pivotal role in this regard. It is proposed that IL-1beta may bind to its corresponding receptors located in the glomus cells of the vagal paraganglia and then elicit action potentials in the nerve. The existence of IL-1 receptor type I (IL-1RI) in the vagal paraganglia has been shown. The carotid body, which is the largest peripheral chemoreceptive organ, is also a paraganglion. We hypothesize that the carotid body might play a role similar to the vagal paraganglia because they are architectonically similar. Recently we verified the presence of IL-1RI in the rat carotid body and observed increase firing in the carotid sinus nerve following IL-1beta stimulation. The aim of this study was to observe the changes in expression of IL-1RI and tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, in the glomus cells of the rat carotid body following intraperitoneal injection of IL-1beta. The radioimmunoassay result showed that the blood IL-1beta level was increased after the intraperitoneal injection of rmIL-1beta (750 ng/kg) from 0.48+/-0.08 to 0.78+/-0.07 ng/ml (P<0.05). Immunofluorescence and Western blot analysis showed that the expression of IL-1RI and TH in the rat carotid body was increased significantly following peritoneal IL-1beta stimulation. In addition, double immunofluorescence labeling for TH and PGP9.5, a marker for glomus cells, or TH immunofluoresence with hematoxylin-eosin (HE) counterstaining revealed that a considerable number of glomus cells did not display TH immunoreactivity. These data provide morphological evidence for the response of the carotid body to proinflammatory cytokine stimulation. The results also indicate that not all of the glomus cells express detectable TH levels either in normal or in some abnormal conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00418-007-0346-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!