Theories of abnormal anatomical and functional connectivity in schizophrenia and bipolar disorder are supported by evidence from functional magnetic resonance imaging (MRI), structural MRI and diffusion tensor imaging (DTI). The presence of similar abnormalities in unaffected relatives suggests such disconnectivity is genetically mediated, albeit through unspecified loci. Neuregulin 1 (NRG1) is a psychosis susceptibility gene with effects on neuronal migration, axon guidance and myelination that could potentially explain these findings. In the current study, unaffected subjects were genotyped at the NRG1 single nucleotide polymorphism (SNP) rs6994992 (SNP8NRG243177) locus, previously associated with increased risk for psychosis, and the effect of genetic variation at this locus on white matter density (T(1)-weighted MRI) and integrity (DTI) was ascertained. Subjects with the risk-associated TT genotype had reduced white matter density in the anterior limb of the internal capsule and evidence of reduced structural connectivity in the same region using DTI. We therefore provide the first imaging evidence that genetic variation in NRG1 is associated with reduced white matter density and integrity in human subjects. This finding is discussed in the context of NRG1 effects on neuronal migration, axon guidance and myelination.

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.mp.4002103DOI Listing

Publication Analysis

Top Keywords

white matter
16
matter density
16
density integrity
8
effects neuronal
8
neuronal migration
8
migration axon
8
axon guidance
8
guidance myelination
8
genetic variation
8
reduced white
8

Similar Publications

Purpose: To determine whether there is a difference in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values in white matter pathways in the subacute period after COVID-19 infection and to evaluate the correlation between diffusion tensor imaging (DTI) metrics and laboratory findings.

Material And Methods: The study included 64 healthy controls and 91 patients. Patients were classified as group 1 (all patients, n = 91), group 2 (outpatients, n = 58), or group 3 (inpatients, n = 33).

View Article and Find Full Text PDF

Trigeminal nerve microstructure is linked with neuroinflammation and brainstem activity in migraine.

Brain

January 2025

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.

Although the pathophysiology of migraine involves a complex ensemble of peripheral and central nervous system changes that remain incompletely understood, the activation and sensitization of the trigeminovascular system is believed to play a major role. However, non-invasive, in vivo neuroimaging studies investigating the underlying neural mechanisms of trigeminal system abnormalities in human migraine patients are limited. Here, we studied 60 patients with migraine (55 females, mean age ± SD: 36.

View Article and Find Full Text PDF

AI-Assisted Compressed Sensing Enables Faster Brain MRI for the Elderly: Image Quality and Diagnostic Equivalence with Conventional Imaging.

Int J Gen Med

January 2025

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, People's Republic of China.

Purpose: Conventional brain MRI protocols are time-consuming, which can lead to patient discomfort and inefficiency in clinical settings. This study aims to assess the feasibility of using artificial intelligence-assisted compressed sensing (ACS) to reduce brain MRI scan time while maintaining image quality and diagnostic accuracy compared to a conventional imaging protocol.

Patients And Methods: Seventy patients from the department of neurology underwent brain MRI scans using both conventional and ACS protocols, including axial and sagittal T2-weighted fast spin-echo sequences and T2-fluid attenuated inversion recovery (FLAIR) sequence.

View Article and Find Full Text PDF

From circuits to lifespan: translating mouse and human timelines with neuroimaging based tractography.

J Neurosci

January 2025

Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.

Animal models are commonly used to investigate developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging.

View Article and Find Full Text PDF

Background: Cerebrospinal fluid (CSF) loss in spontaneous intracranial hypotension (SIH) is accompanied by volume shifts between the intracranial compartments. This study investigated tricompartimental and longitudinal volume shifts after closure of a CSF leak.

Methods: Patients with SIH and suitable pre-therapeutic and post-therapeutic imaging for volumetric analysis were identified from our tertiary care center between 2020 and 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!