Objectives: We previously reported that combined transplantation of skeletal myoblasts and AC-133+ cells leads to improved left ventricular function, reduced infarct size and myocardial apoptosis in a model of chronic ischemia. The aim of this study is to elucidate on the possible mechanisms and to assess new implications in increasing cell therapy efficacy in chronic ischemia.

Methods: Heart failure was induced by LAD-ligation in nude rats. (a) Homologous skeletal myoblasts (SM), (b) human derived AC-133+ cells (SC), (c) combination of both cells (Comb) and (d) culture medium (CM) were injected in the infarct and peri-infarct area, respectively, four weeks after infarction. Cell engraftment was detected by fluorescence microscopy and confirmed by immunohistochemical techniques. Cardiac gene expression levels of VEFG-A, cardiac troponin, ACTA2, SDF-1, TGF-beta-1, were assessed by RT-PCR.

Results: Both cell types were detected in the injection areas four weeks after cell transplantation. Double cell therapy led to increased cell engraftment (SM: 52+/-13/mm(2), SC: 45+/-8 in the combination group vs. SM: 31+/-9 and 23+/-7 in the monotherapy groups, P=0.007). This effect was confirmed using PCR. Apoptotic index among engrafted cells was significantly lower in the Comb group (Comb: 0.53+/-0.12 for myoblasts and 0.34+/-0.09 for SC, vs. SM: 0.76+/-0.19 and SC: 0.63+/-0.16, P=0.013). Expression of cardiac troponin was higher in the combination group in the peri-infarct area. Evaluation of capillary density revealed increased angiogenesis in the combination group (Comb: 12.3+/-2.3, SM: 5.2+/-1.2, SC: 8.3+/-1.8, P=0.002). Neoangiogenesis was associated with higher levels of VEGF-A and TGF-beta in the injection areas as detected by RT-PCR. The higher SDF-1 expression in the injected areas implies an increased secretion of chemoattractants by the injected cells, which suggests that the effect of combined cell transplantation is mainly associated with paracrine mechanisms.

Conclusions: The mechanism of functional improvement after combined transplantation of skeletal myoblasts and AC-133+ progenitors in ischemic heart failure is mainly associated with increased angiogenesis based on paracrine factors, which leads to improved survival and lower apoptosis rates of the injected cells.

Download full-text PDF

Source
http://dx.doi.org/10.1510/icvts.2007.162917DOI Listing

Publication Analysis

Top Keywords

skeletal myoblasts
16
combined transplantation
12
transplantation skeletal
12
cell engraftment
12
heart failure
12
combination group
12
cell
8
increased cell
8
lower apoptosis
8
apoptosis rates
8

Similar Publications

Unlabelled: Rhabdomyosarcoma (RMS) is a tumor which resembles skeletal muscle. Current treatments are limited to surgery and non-targeted chemotherapy, highlighting the need for alternative therapies. Differentiation therapy uses molecules that act to shift the tumor cells' phenotype from proliferating to differentiated, which in the case of skeletal muscle includes exit from the cell cycle and potentially fusion into myofibers.

View Article and Find Full Text PDF

m6A modified pre-miR-503-5P contributes to myogenic differentiation through the activation of mTOR pathway.

Int J Biol Macromol

January 2025

Sanya Research Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya 572025, China; Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

The post-transcriptional regulation of epigenetic modification is a hot topic in skeletal muscle development research. Both m6A modifications and miRNAs have been well-established as crucial regulators in skeletal muscle development. However, the interacting regulatory mechanisms between m6A modifications and miRNAs in skeletal muscle development remain unclear.

View Article and Find Full Text PDF

The duck industry is vital for supplying high-quality protein, making research into the development of duck skeletal muscle critical for improving meat and egg production. In this study, we leveraged Oxford Nanopore Technologies (ONT) sequencing to perform full-length transcriptome sequencing of myoblasts harvested from the leg muscles of duck embryos at embryonic day 13 (E13), specifically examining both the proliferative (GM) and differentiation (DM) phases. Our analysis identified a total of 5797 novel transcripts along with 2332 long non-coding RNAs (lncRNAs), revealing substantial changes in gene expression linked to muscle development.

View Article and Find Full Text PDF

Cellular senescence has been implicated in the aging-related dysfunction of satellite cells, the resident muscle stem cell population primarily responsible for the repair of muscle fibres. Despite being in a state of permanent cell cycle arrest, these cells remain metabolically active and release an abundance of factors that can have detrimental effects on the cellular microenvironment. This phenomenon is known as the senescence-associated secretory phenotype (SASP), and its metabolic profile is poorly characterized in senescent muscle.

View Article and Find Full Text PDF

Succinate Regulates Exercise-Induced Muscle Remodelling by Boosting Satellite Cell Differentiation Through Succinate Receptor 1.

J Cachexia Sarcopenia Muscle

February 2025

Clinical Nutrition Service Center, Department of General Surgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.

Background: Skeletal muscle remodelling can cause clinically important changes in muscle phenotypes. Satellite cells (SCs) myogenic potential underlies the maintenance of muscle plasticity. Accumulating evidence shows the importance of succinate in muscle metabolism and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!