Motivation: Most computational methodologies for miRNA:mRNA target gene prediction use the seed segment of the miRNA and require cross-species sequence conservation in this region of the mRNA target. Methods that do not rely on conservation generate numbers of predictions, which are too large to validate. We describe a target prediction method (NBmiRTar) that does not require sequence conservation, using instead, machine learning by a naïve Bayes classifier. It generates a model from sequence and miRNA:mRNA duplex information from validated targets and artificially generated negative examples. Both the 'seed' and 'out-seed' segments of the miRNA:mRNA duplex are used for target identification.

Results: The application of machine-learning techniques to the features we have used is a useful and general approach for microRNA target gene prediction. Our technique produces fewer false positive predictions and fewer target candidates to be tested. It exhibits higher sensitivity and specificity than algorithms that rely on conserved genomic regions to decrease false positive predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btm484DOI Listing

Publication Analysis

Top Keywords

naïve bayes
8
microrna target
8
target gene
8
gene prediction
8
sequence conservation
8
mirnamrna duplex
8
false positive
8
positive predictions
8
target
7
bayes microrna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!