Infection process and the interaction of rice roots with rhizobia.

J Exp Bot

ARC Centre of Excellence for Integrative Legume Research, Genomic Interactions Group, Research School of Biological Sciences, GPO Box 475, Canberra, ACT 2601, Australia.

Published: February 2008

Most rhizobial strains inhibit rice root growth in the presence of calcium or potassium nitrates, but not ammonium nitrate. Certain rhizobial strains, however, such as strain R4, do not inhibit rice growth and can enter rice roots and multiply in the intercellular spaces. By using the green fluorescent protein (GFP) as a visual marker, it was found that Rhizobium became intimately associated with rice seedling roots within 24-48 h. During this initial period it was observed that strain R4 could cause structural changes resembling infection threads within the rice root hairs. Generally, the sites of the emerging lateral roots provide a temporary entry point for rhizobia, either by root hair entry or crack entry. All tested GFP-labelled Rhizobium strains infected the root hairs near the base of growing lateral roots. This study suggests that some strains may have the ability to infect rice root tissues via root hairs located at the emerging lateral roots and to spread extensively throughout the rice root.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erm181DOI Listing

Publication Analysis

Top Keywords

rice root
16
root hairs
12
lateral roots
12
rice
8
rice roots
8
rhizobial strains
8
inhibit rice
8
emerging lateral
8
root
7
roots
6

Similar Publications

Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.

View Article and Find Full Text PDF

Enhancing crops productivity to ensure food security is one of the major challenges encountering agriculture today. A promising solution is the use of biostimulants, which encompass molecules that enhance plant fitness, growth, and productivity. The regulatory metabolite zaxinone and its mimics (MiZax3 and MiZax5) showed promising results in improving the growth and yield of several crops.

View Article and Find Full Text PDF

Shoot-Silicon-Signal protein to regulate root silicon uptake in rice.

Nat Commun

December 2024

Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan.

Plants accumulate silicon to protect them from biotic and abiotic stresses. Especially in rice (Oryza sativa), a typical Si-accumulator, tremendous Si accumulation is indispensable for healthy growth and productivity. Here, we report a shoot-expressed signaling protein, Shoot-Silicon-Signal (SSS), an exceptional homolog of the flowering hormone "florigen" differentiated in Poaceae.

View Article and Find Full Text PDF

CesA proteins response to arsenic stress in rice involves structural and regulatory mechanisms, highlighting the role of BES1/BZR1 transcript levels under arsenate exposure and significant downregulation of BZR1 protein expression. Plants interact with several hazardous metalloids during their life cycle through root and soil connection. One such metalloid, is arsenic and its perilous impact on rice cultivation is a well-known threat.

View Article and Find Full Text PDF

This work presents air-coupled piezoelectric micromachined ultrasonic transducers (pMUTs) with high sound pressure level (SPL) under low-driving voltages by utilizing sputtered potassium sodium niobate KNaNbO (KNN) films. A prototype single KNN pMUT has been tested to show a resonant frequency at 106.3 kHz under 4 V with outstanding characteristics: (1) a large vibration amplitude of 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!