Many of the computational principles for sound localization have emerged from the study of avian brains, especially for the construction of codes for interaural timing differences. Our understanding of the neural codes for interaural level differences, and other intensity-related, non-localization sound processing, has lagged behind. In birds, cochlear nucleus angularis (NA) is an obligatory relay for intensity processing. We present our current knowledge of the cell types found in NA, their responses to auditory stimuli, and their likely coding roles. On a cellular level, our recent experimental and modeling studies have shown that short-term synaptic plasticity in NA is a major player in the division of intensity and timing information into parallel pathways. NA projects to at least four brain stem and midbrain targets, suggesting diverse involvement in a range of different sound processing circuits. Further studies comparing processing in NA and analogous neurons in the mammalian cochlear nucleus will highlight which features are conserved and perhaps may be computationally advantageous, and which are species- or clade-specific details demonstrating either disparate environmental requirements or different solutions to similar problems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286339 | PMC |
http://dx.doi.org/10.1016/S0079-6123(06)65008-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!