A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptional instability is not a universal attribute of aging. | LitMetric

AI Article Synopsis

  • Cumulative somatic mutations may impact aging by disrupting the networks that control cell function and structure.
  • A study on cardiomyocytes indicated that older cells showed increased transcriptional variability.
  • However, research on four types of hematopoietic cells did not find significant age-related changes in gene expression noise or cell variability, suggesting that regulatory instability may be more relevant in nonrenewing tissues.

Article Abstract

It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long-lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription-polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell-to-cell variability was unaffected by age. We conclude that large-scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1474-9726.2007.00337.xDOI Listing

Publication Analysis

Top Keywords

increase transcriptional
8
transcriptional heterogeneity
8
naïve cells
8
cells
7
aging
5
transcriptional
4
transcriptional instability
4
instability universal
4
universal attribute
4
attribute aging
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!