Programmed death-1 (PD-1) is a recently identified coinhibitory molecule that belongs to the CD28 superfamily. PD-1 has two ligands PD-L1 and PD-L2. There is some evidence that PD-L1 and PD-L2 serve distinct functions, but their exact function in alloimmunity remains unclear. In the present study, we used a GVHD-like model that allows detailed analyses of T-cell activation at a single cell level in vivo to examine the role of PD-1/PD-L1 and PD-1/PD-L2 interactions in regulating proliferation of CD4(+) and CD8(+) T cells in response to alloantigen stimulation. We found that both CD4(+) and CD8(+) T cells proliferated vigorously in vivo and that PD-L1 and PD-L2 exhibit strikingly different effect on T-cell proliferation. While blocking PD-L1 did not affect the in vivo proliferation of CD4(+) and CD8(+) T cells regardless of CD28 costimulation, blocking PD-L2 resulted in a marked increase in the responder frequency of CD8(+) T-cells in vivo. The effect of PD-L2 on the CD8(+) T-cell proliferation is regulated by CD28 costimulation and by the CD4(+) T cells. We conclude that PD-L1 and PD-L2 function differently in regulating alloreactive T-cell activation in vivo, and PD-L2 is predominant in this model in limiting alloreactive CD8(+) T-cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-6143.2007.01999.xDOI Listing

Publication Analysis

Top Keywords

pd-l1 pd-l2
20
cd4+ cd8+
16
cd8+ cells
16
t-cell proliferation
12
pd-l2
8
regulating alloreactive
8
t-cell activation
8
proliferation cd4+
8
cd28 costimulation
8
vivo pd-l2
8

Similar Publications

Background: Metabolic pathways are known to significantly impact the development and advancement of lung cancer. This study sought to establish a signature related to butyrate metabolism that is specifically linked to lung adenocarcinoma (LUAD).

Methods: For the purpose of identifying butyrate metabolism-related differentially expressed genes (BMR-DEGs) in the TCGA-LUAD dataset, we introduced transcriptome data.

View Article and Find Full Text PDF

Genetic variants in PD-1 and its ligands, gene-gene and gene-environment interactions in allergic rhinitis.

Int Immunopharmacol

January 2025

Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China; International Center for Allergy Research, Nanjing Medical University, Nanjing, China. Electronic address:

Background: The etiology of allergic rhinitis (AR), in which genetic and environmental factors are closely intertwined, has not yet been completely clarified. Programmed cell death 1 (PD-1) and its ligands (PD-L1 and PD-L2) regulate the immune and inflammatory responses during the development of immune-related and atopic diseases. To clarify the associations of genetic variants in PD-1, PD-L1 and PD-L2 with susceptibility to AR, gene-gene and gene-environment interactions were investigated.

View Article and Find Full Text PDF

Purpose: A glioblastoma (GBM) is a primary brain tumor with significant unmet therapeutic needs. Immune checkpoint inhibitors (ICIs) have marked therapeutic benefits in many different cancers but have yet to show benefit for most GBM patients in phase III trials.

Methods: A systematic review querying ClinicalTrials.

View Article and Find Full Text PDF

Background: Due to malnutrition and tumor cachexia, body composition (BC) is frequently altered and known to adversely affect short- and long-term results in patients with cholangiocarcinoma (CCA). Here, we explored immune cell populations in the tumor and liver of CCA patients with respect to BC.

Methods: A cohort of 96 patients who underwent surgery for CCA was investigated by multiplexed immunofluorescence (MIF) techniques with computer-based analysis on whole-tissue slide scans to quantify and characterize immune cells in normal liver and tumor regions.

View Article and Find Full Text PDF

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!