Solid-state 63Cu and 65Cu NMR experiments have been conducted on a series of inorganic and organometallic copper(I) complexes possessing a variety of spherically asymmetric two-, three-, and four-coordinate Cu coordination environments. Variations in structure and symmetry, and corresponding changes in the electric field gradient (EFG) tensors, yield 63/65Cu quadrupolar coupling constants (CQ) ranging from 22.0 to 71.0 MHz for spherically asymmetric Cu sites. These large quadrupolar interactions result in spectra featuring quadrupolar-dominated central transition patterns with breadths ranging from 760 kHz to 6.7 MHz. Accordingly, Hahn-echo and/or QCPMG pulse sequences were applied in a frequency-stepped manner to rapidly acquire high S/N powder patterns. Significant copper chemical shielding anisotropies (CSAs) are also observed in some cases, ranging from 1000 to 1500 ppm. 31P CP/MAS NMR spectra for complexes featuring 63/65Cu-31P spin pairs exhibit residual dipolar coupling and are simulated to determine both the sign of CQ and the EFG tensor orientations relative to the Cu-P bond axes. X-ray crystallographic data and theoretical (Hartree-Fock and density functional theory) calculations of 63/65Cu EFG and CS tensors are utilized to examine the relationships between NMR interaction tensor parameters, the magnitudes and orientations of the principal components, and molecular structure and symmetry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja073238x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!