We report visible, Raman, and infrared spectra of self-assembled monolayers (SAMs) formed by the donor-(pi-bridge)-acceptor chromophore, Z-beta-[N-(omega-acetylthioalkyl)-4-quinolinium]-alpha-cyano-4-styryldicyanomethanide (CH3CO-S-CnH2n-Q3CNQ where n=8, 10), on gold-coated substrates. The data are compared with the spectra collected for the same compound in solution and in the solid state, and with those obtained for a Langmuir-Blodgett (LB) monolayer of C16H33-Q3CNQ deposited on gold. Spectral analysis confirms that in solution, in the solid state and in the LB film the chromophore has a zwitterionic (D+-pi-A-) ground state. At variance with this well-known result, our data show that in SAMs deposited on gold the chromophore has a more neutral, quinoid ground state. We relate this difference to the different packing of the molecules in the two different films: in SAMs in fact the chromophores stand almost vertical with respect to the substrate, whereas in LB films they make an angle of about 45 degrees. The Q3CNQ molecule is a well-known molecular rectifier, and for SAMs we were able to check the direction of electron flow at forward bias on the same samples that have been characterized spectroscopically, shedding light on the rectification mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200700447DOI Listing

Publication Analysis

Top Keywords

solution solid
8
solid state
8
deposited gold
8
ground state
8
situ spectroscopic
4
spectroscopic characterization
4
characterization rectifying
4
rectifying molecular
4
molecular monolayers
4
monolayers self-assembled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!