Objectives: To examine the presence of an ATXN2 mutation in patients with parkinsonism in the Korean population and to find the difference in the ATXN2 mutation between ataxic and parkinsonian phenotypes.
Design: Survey.
Setting: Seoul National University Hospital (a referral center). Patients Patients with Parkinson disease (PD) (n = 468) and the Parkinson variant of multiple system atrophy (MSA-P) (n = 135) who were seen at our Department of Neurology during the past 3 years.
Main Outcome Measures: CAG expansion in spinocerebellar ataxia type 2 (SCA2) alleles was assessed by polymerase chain reaction amplification and fragment analysis, and its size and interruption were verified by cloning and sequencing. SCA2 was tested also in the family members of the probands. Striatal dopamine transporter (DAT) and D(2) receptor status were evaluated in the probands and their SCA2-positive family members using iodine I 123 [(123)I]-radiolabeled fluoropropyl (FP) 2-carbomethoxy-3-(4-iodophenyl) tropane (CIT) with single-photon emission computed tomography (SPECT) and carbon C 11 [(11)C]-radiolabeled raclopride positron emission tomography (PET).
Results: We found 3 patients with apparently sporadic disease with expanded CAG repeats in the ATXN2 locus. Two patients had a PD phenotype. The third patient showed an MSA-P phenotype. The CAG repeats in the ATXN2 locus of the patients were 35/22, 34/22, and 32/22, respectively (range in normal population, 19-27). The size of repeats was lower than the CAG repeats (38-51) in ataxic SCA2 in our population. The sequence of expanded CAG repeats was interrupted by CAA as (CAG)(n)(CAA)(CAG)(8) in all the patients. DNA analyses in 2 families showed 2 asymptomatic carriers in each family. In the patient with the PD phenotype, striatal DAT loss was more severe in the putamen than the caudate, and [(11)C]raclopride PET showed an increased relative putamen-caudate binding ratio. The patient with the MSA-P phenotype had severe DAT loss throughout the striatum. Two of 3 asymptomatic carriers had striatal DAT loss.
Conclusions: This study demonstrates that SCA2 is one of the genetic causes of PD and MSA-P. All 3 patients had apparently sporadic disease, emphasizing the need to screen even in patients with nonfamilial disease. CAG repeats were in the low expansion range and interrupted by CAA in all patients in the low-range expansion. Therefore, accurate determination of CAG expansion and ATXN2 sequencing are warranted. [(123)I]FP-CIT SPECT and [(11)C]raclopride PET provide a useful way to evaluate the degree of nigrostriatal dopaminergic damage in SCA2-related parkinsonism and gene carriers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1001/archneur.64.10.1510 | DOI Listing |
Methods Cell Biol
January 2025
State University of Minas Gerais, Department of Biomedical Sciences and Health, Passos, MG, Brazil. Electronic address:
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (deemed to be University), Sawangi (M), Wardha, India. Electronic address:
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder characterized by cognitive decline, motor dysfunction, and psychiatric disturbances. A common feature of neurodegenerative disorders is mitochondrial dysfunction, which affects the brain's sensitivity to oxidative damage and its high oxygen demand. This dysfunction may plays a significant role in the pathogenesis of Huntington's disease.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine, Rochester, MI 48309, USA.
Background: Huntington's disease (HD) is a multifaceted neurological disorder characterized by the progressive deterioration of motor, cognitive, and psychiatric functions. Despite a limited understanding of its pathogenesis, research has implicated abnormal trinucleotide cytosine-adenine-guanine CAG repeat expansion in the huntingtin gene (HTT) as a critical factor. The development of innovative strategies is imperative for the early detection of predictive biomarkers, enabling timely intervention and mitigating irreversible cellular damage.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Neurology of First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
Background: Spinocerebellar ataxia type 3 (SCA3) is a hereditary disease caused by abnormally expanded CAG repeats in the ATXN3 gene. The study aimed to identify potential biomarkers for assessing therapeutic efficacy by investigating the associations between expanded CAG repeat size, brain and spinal cord volume loss, and motor functions in patients with SCA3.
Methods: In this prospective, cross-observational study, we analyzed 3D T1-weighted MRIs from 92 patients with SCA3 and 42 healthy controls using voxel-based morphometry and region of interest approaches.
J Neurol
January 2025
Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA.
Fluid biomarkers play important roles in many aspects of neurodegenerative diseases, such as Huntington's disease (HD). However, a main question relates to how well levels of biomarkers measured in CSF are correlated with those measured in peripheral fluids, such as blood or saliva. In this study, we quantified levels of four neurodegenerative disease-related proteins, neurofilament light (NfL), total tau (t-tau), glial fibrillary acidic protein (GFAP) and YKL-40 in matched CSF, plasma and saliva samples from Huntingtin (HTT) gene-positive individuals (n = 21) using electrochemiluminescence assays.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!