In the species of genus Nicotiana, nicotine to nornicotine conversion is mediated by closely related nicotine N-demethylase (NND) proteins that are encoded by the CYP82E subfamily of cytochrome P450 genes. The diverse number and transcriptional regulation of the NND genes have created large variations in the time and rate of nornicotine production in various Nicotiana species. In tobacco, previous studies have identified the senescence-inducible CYP82E4 gene as an important factor controlling nicotine conversion. Nornicotine is an undesirable alkaloid in tobacco, because it serves as a precursor for N'-nitrosonornicotine, a potent carcinogen in laboratory animals. The objective of this study was to investigate the possible catalytic roles of additional NND genes in shaping the alkaloid profile of tobacco. A PCR-based strategy using primers complementary to conserved regions of CYP82E genes yielded a cDNA, designated CYP82E5v2, which conferred NND activity in heterologous expression studies using yeast as a host. PCR amplification of CYP82E5v2 orthologs revealed that of the two progenitor species of tobacco, CYP82E5v2 was donated by the N. tomentosiformis parent. A comparison of CYP82E4 and CYP82E5v2 expression using qualitative real-time PCR analysis demonstrated that the transcription of CYP82E5v2 was higher in the green leaves of all tobacco genotypes tested, while the expression of CYP82E4 dominated in the senescing leaves of converter tobacco. These results suggest that differentially regulated NND genes regulate nornicotine production in the green and senescing leaves of tobacco and provide tools to reduce nornicotine levels in tobacco leaves.

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcm128DOI Listing

Publication Analysis

Top Keywords

leaves tobacco
12
nnd genes
12
tobacco
9
cytochrome p450
8
nicotine nornicotine
8
nornicotine conversion
8
green leaves
8
nornicotine production
8
species tobacco
8
senescing leaves
8

Similar Publications

Anthocyanins not only serve as critical pigments determining floral hues but also play essential roles in attracting insects for pollination, feeding animals and mitigating abiotic stress. However, the molecular mechanisms underlying the regulation of flower color in sesame has not yet been reported. In this study, an F population was constructed by crossing 'Ganzhi 9' (purple-flowered) with 'BS377' (white-flowered).

View Article and Find Full Text PDF

An elicitor, chitosan (CHT), induces stomatal closure in plants, which is accompanied by salicylhydroxamic acid (SHAM)-sensitive peroxidases-mediated reactive oxygen species (ROS) production in guard cells. Reactive carbonyl species (RCS) function downstream of ROS in abscisic acid (ABA) and methyl jasmonate (MeJA) signalling in guard cells. However, the involvement of RCS in CHT-induced stomatal closure is still unknown.

View Article and Find Full Text PDF

Ashwagandha (Withania somnifera), enriched in alkaloids, steroidal lactones and saponins, is a valuable herb in Indian Ayurvedic medicine. During December 2023, Va-1 (Vallabh Ashwagandha-1) plants at ICAR -Central Tobacco Research Institute, Vedasandur, Tamil Nadu (10.53717ºN, 77.

View Article and Find Full Text PDF

Pitaya canker disease, caused by , is the primary threat to pitaya cultivation, significantly compromising fruit quality and reducing yield. WRKY transcription factors are essential regulators in plant pathogen recognition and defense mechanisms, yet their specific roles in the development of pitaya canker disease remain largely unexplored. In this study, five genes (, , , , and ) associated with pitaya canker disease were identified through RNA-Seq analysis.

View Article and Find Full Text PDF

The chloroplast RNA-binding protein CP29A supports expression during cold acclimation.

Proc Natl Acad Sci U S A

February 2025

Molecular Genetics, Institute of Biology, Faculty of Life Sciences, Humboldt Universität zu Berlin, Berlin 10115, Germany.

The chloroplast genome encodes key components of the photosynthetic light reaction machinery as well as the large subunit of the enzyme central for carbon fixation, Ribulose-1,5-bisphosphat-carboxylase/-oxygenase (RuBisCo). Its expression is predominantly regulated posttranscriptionally, with nuclear-encoded RNA-binding proteins (RBPs) playing a key role. Mutants of chloroplast gene expression factors often exhibit impaired chloroplast biogenesis, especially in cold conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!