Grazing protozoa and magnetosome dissolution in magnetotactic bacteria.

Environ Microbiol

Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.

Published: November 2007

Magnetotactic bacteria show an ability to navigate along magnetic field lines because of magnetic particles called magnetosomes. All magnetotactic bacteria are unicellular except for the multicellular prokaryote (recently named 'Candidatus Magnetoglobus multicellularis'), which is formed by an orderly assemblage of 17-40 prokaryotic cells that swim as a unit. A ciliate was used in grazing experiments with the M. multicellularis to study the fate of the magnetosomes after ingestion by the protozoa. Ciliates ingested M. multicellularis, which were located in acid vacuoles as demonstrated by confocal laser scanning microscopy. Transmission electron microscopy and X-ray microanalysis of thin-sectioned ciliates showed the presence of M. multicellularis and magnetosomes inside vacuoles in different degrees of degradation. The magnetosomes are dissolved within the acidic vacuoles of the ciliate. Depending on the rate of M. multicellularis consumption by the ciliates the iron from the magnetosomes may be recycled to the environment in a more soluble form.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-2920.2007.01389.xDOI Listing

Publication Analysis

Top Keywords

magnetotactic bacteria
12
magnetosomes
5
grazing protozoa
4
protozoa magnetosome
4
magnetosome dissolution
4
dissolution magnetotactic
4
bacteria magnetotactic
4
bacteria ability
4
ability navigate
4
navigate magnetic
4

Similar Publications

Magnetotactic bacteria from diverse Pseudomonadota families biomineralize intracellular Ca-carbonate.

ISME J

January 2025

Université Aix-Marseille, CNRS, CEA, UMR7265 Institut de Biosciences and Biotechnologies d'Aix-Marseille, CEA Cadarache, F-13108 Saint-Paul-lez-Durance, France.

Intracellular calcium carbonate formation has long been associated with a single genus of giant Gammaproteobacteria, Achromatium. However, this biomineralization has recently received increasing attention after being observed in photosynthetic Cyanobacteriota and in two families of magnetotactic bacteria affiliated with the Alphaproteobacteria. In the latter group, bacteria form not only intracellular amorphous calcium carbonates into large inclusions that are refringent under the light microscope, but also intracellular ferrimagnetic crystals into organelles called magnetosomes.

View Article and Find Full Text PDF

Amended Ferrozine Assay for Quantifying Magnetosome Iron Content in Magnetotactic Bacteria.

ACS Omega

December 2024

Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.

MSR-1 can biomineralize the magnetosome, nanoscale magnetite (FeO) surrounded by a lipid bilayer, inside the cell. The magnetosome chain(s) enables MSR-1 to move along with the magnetic field (magnetoaerotaxis). Due to its unique characteristics, MSR-1 has attracted attention for biotechnological applications.

View Article and Find Full Text PDF

The origins of light-independent magnetoreception in humans.

Front Hum Neurosci

November 2024

The Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan.

Article Synopsis
  • Earth's abundance of iron has been essential for the development of life, influencing biochemical processes and leading to the emergence of early life forms near hydrothermal vents.
  • Iron also plays a role in the evolution of organisms like magnetotactic bacteria, which can detect the Earth's geomagnetic field, showing adaptations beyond humans' conventional senses.
  • Research on species such as zebrafish and pigeons indicates that various life forms have specialized mechanisms for geomagnetic sensing, hinting at complex interactions in the brain related to magnetic fields and their implications for human magnetoreception.
View Article and Find Full Text PDF

On the backward excursions in the free-swimming magnetotactic multicellular prokaryote 'Candidatus Magnetoglobus multicellularis'.

Braz J Microbiol

December 2024

Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro, RJ, Brazil.

Magnetotactic bacteria align to magnetic field lines while swimming in a behavior known as magnetotaxis. They are diverse phylogenetically and morphologically and include both unicellular and multicellular morphologies. The magnetotactic multicellular prokaryote (MMP) 'Candidatus Magnetoglobus multicellularis' has been extensively studied, even though it remains uncultured up to now.

View Article and Find Full Text PDF

Magnetochrome-catalyzed oxidation of ferrous iron by MamP enables magnetite crystal growth in the magnetotactic bacterium AMB-1.

Proc Natl Acad Sci U S A

December 2024

Commissariat à l'Energie Atomique (CEA), CNRS, Bioscience and Biotechnology Institute of Aix-Marseille (BIAM), Aix-Marseille Université, Saint-Paul-lez-Durance 13115, France.

Magnetotactic bacteria have evolved the remarkable capacity to biomineralize chains of magnetite [Fe(II)Fe(III)O] nanoparticles that align along the geomagnetic field and optimize their navigation in the environment. Mechanisms enabling magnetite formation require the complex action of numerous proteins for iron acquisition, sequestration in dedicated magnetosome organelles, and precipitation into magnetite. The MamP protein contains c-type cytochromes called magnetochrome domains that are found exclusively in magnetotactic bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!