Although soil-borne bacteria represent the world's greatest source of biological diversity, it is not well understood whether extreme environmental conditions, such as those found in Antarctic habitats, result in reduced soil-borne microbial diversity. To address this issue, patterns of bacterial diversity were studied in soils sampled along a > 3200 km southern polar transect spanning a gradient of increased climate severity over 27 degrees of latitude. Vegetated and fell-field plots were sampled at the Falkland (51 degrees S), South Georgia (54 degrees S), Signy (60 degrees S) and Anchorage Islands (67 degrees S), while bare frost-sorted soil polygons were examined at Fossil Bluff (71 degrees S), Mars Oasis (72 degrees S), Coal Nunatak (72 degrees S) and the Ellsworth Mountains (78 degrees S). Bacterial 16S rRNA gene sequences were recovered subsequent to direct DNA extraction from soil, polymerase chain reaction amplification and cloning. Although bacterial diversity was observed to decline with increased latitude, habitat-specific patterns appeared to also be important. Namely, a negative relationship was found between bacterial diversity and latitude for fell-field soils, but no such pattern was observed for vegetated sites. The Mars Oasis site, previously identified as a biodiversity hotspot within this region, proved exceptional within the study transect, with unusually high bacterial diversity. In independent analyses, geographical distance and vegetation cover were found to significantly influence bacterial community composition. These results provide insight into the factors shaping the composition of bacterial communities in Antarctic terrestrial habitats and support the notion that bacterial diversity declines with increased climatic severity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1462-2920.2007.01379.x | DOI Listing |
Sci Rep
January 2025
Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego 8 St, 02-786, Warsaw, Poland.
Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Technology and Life Sciences-National Research Institute, Falenty, 3 Hrabska Avenue, 05-090, Raszyn, Poland.
Plant growth-promoting bacteria (PGPB) are considered an effective eco-friendly biostimulator. However, relatively few studies have examined how PGPB affect the native bacterial community of major crops. Thus, this study investigates the impact of a PGPB consortium, comprising Pseudomonas sp.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University; Yangling, Shaanxi 712100, China. Electronic address:
Biofilms are complex adhesive structures that establish chronic infection and allow robust protection from external stressors such as antibiotics. Cellulose as one of the compositions of bacteria biofilm which protect bacteria from stress, host immune responses and resistance to antibiotics. Bacterial stress responses are regulated via guanosine pentaphosphate and tetraphosphate (p)ppGpp.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Department of Public Health, Faculty of Medicine, Hokkaido University, N15, W7, Kita-ku, Sapporo 060-8638, Japan.
Background: Recent studies have focused on the relationship between obesity and gut microbiota. This study aims to identify fecal components and gut bacterial species associated with different BMI categories.
Methods: In this study, 538 participants aged ≥18 years were categorized into underweight, normal, and obese groups based on BMI (cutoffs: 18.
J Hazard Mater
January 2025
Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:
Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!