A general method for designing combinatorial peptide libraries decodable by amino acid analysis.

J Comb Chem

Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland.

Published: February 2008

Herein we describe an algorithm for designing combinatorial peptide libraries for split-and-mix synthesis on solid support that are decodable by amino acid analysis (AAA) of the beads. AAA is a standard service analysis available in most biochemical laboratories, and it allows one to control the quality of the peptide on each bead, an important feature that is missing from most library decoding protocols. In the algorithm, each AA is assigned to two variable positions in the sequence grouped in a "unique pair". This arrangement limits sequence design because both the number of unique pairs U (setting the maximum number of variable AA) and the maximum number S of different AA per variable position depend on the peptide length N (U=N(N-1)/2), S=N-1). The method is therefore only suitable for focused libraries. An application example is shown for the selection of peptides with N-terminal proline or hydroxyproline catalyzing an aldol reaction from a combinatorial library of 65536 octapeptides. A simple enumeration program is available to help design combinatorial libraries decodable by amino acid analysis. The method applies to linear and cyclic peptides, can be used for nonnatural building blocks, including beta-amino acids, and should help to explore the vast chemistry of linear and cyclic peptide for catalysis and bioactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/cc7001155DOI Listing

Publication Analysis

Top Keywords

decodable amino
12
amino acid
12
acid analysis
12
designing combinatorial
8
combinatorial peptide
8
peptide libraries
8
libraries decodable
8
maximum number
8
number variable
8
linear cyclic
8

Similar Publications

Dehydrins (Dhns) are a group of intrinsically disordered land plant proteins that are closely associated with tolerance of dehydrative stress. Dhns are recognized and classified by the presence and sequence of five different conserved segments, varying in length from 8 to 15 residues, separated by highly variable disordered regions. In addition to one or more copies of the diagnostic, fifteen-residue K segment, most Dhns can be classified into one of three major groups based on the mutually exclusive presence of three other conserved segments (H, Y, or F), with all three groups typically incorporating multi-serine S segments.

View Article and Find Full Text PDF

Antibodies are extensively used in biomedical research, clinical fields, and disease treatment. However, to enhance the reproducibility and reliability of antibody-based experiments, it is crucial to have a detailed understanding of the antibody's target specificity and epitope. In this study, we developed a high-throughput and precise epitope analysis method, DECODE (Decoding Epitope Composition by Optimized-mRNA-display, Data analysis, and Expression sequencing).

View Article and Find Full Text PDF

Decoding the blueprint of receptor binding by filoviruses through large-scale binding assays and machine learning.

Cell Host Microbe

January 2025

Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA. Electronic address:

Evidence suggests that bats are important hosts of filoviruses, yet the specific species involved remain largely unidentified. Niemann-Pick C1 (NPC1) is an essential entry receptor, with amino acid variations influencing viral susceptibility and species-specific tropism. Herein, we conducted combinatorial binding studies with seven filovirus glycoproteins (GPs) and NPC1 orthologs from 81 bat species.

View Article and Find Full Text PDF

tRNA modifications are critical for several aspects of their functions, including decoding, folding, and stability. Using a multifaceted approach encompassing eCLIP-seq and nanopore tRNA-seq, we show that the human tRNA methyltransferase TRMT1L interacts with the component of the Rix1 ribosome biogenesis complex and binds to the 28S rRNA as well as to a subset of tRNAs. Mechanistically, we demonstrate that TRMT1L is responsible for catalyzing N2,N2-dimethylguanosine (mG) solely at position 27 of tRNA-Tyr-GUA.

View Article and Find Full Text PDF

Background: Camels, known as the enduring "ships of the desert," host a complex gut microbiota that plays a crucial role in their survival in extreme environments. However, amidst the fascinating discoveries about the camel gut microbiota, concerns about antibiotic resistance have emerged as a significant global challenge affecting both human and animal populations. Indeed, the continued use of antibiotics in veterinary medicine has led to the widespread emergence of antibiotic-resistant bacteria, which has worsened through gene transfer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!