Treatments for metastatic breast cancer (MBC) are primarily palliative with variable efficacy and outcomes may be influenced by individual differences in drug metabolism. In this study, we examined the association of single nucleotide polymorphisms (SNPs) in genes involved in drug metabolism with progression free survival (PFS) and breast cancer specific survival (BCSS) in 95 patients with MBC that received high dose chemotherapy (HDC) with autologous stem cell transplantation (ASCT). SNPs in the SOD2 (SOD2-01, Val16Ala), MPO (MPO-02, -463 promoter variant) and GSTP1 [GSTP1-01 (Ile105Val), GSTP1-02 (Ala114Val)] genes were examined in DNA isolated from cryopreserved blood products using genotyping assays. Survival was analysed using Cox proportional hazard models and Kaplan-Meier estimates. Patients with the SOD2-01 (TT) genotype had increased risk of disease progression [hazard ratio (HR): 2.52; 95% confidence interval (CI), 1.31-4.85] and breast cancer specific death (HR: 1.92; 95% CI: 1.03-3.57). Risks were increased for patients with both SOD2-01 (TT) and GSTP1-01 (GG or AG) genotypes (HR for disease progression: 2.57, 95% CI: 1.32-5.00 and HR for breast cancer specific death: 2.27; 95% CI: 1.18-4.34). In multivariable analysis, the combined genotype group of SOD2-01 and GSTP1-01 was an independent predictor of PFS and BCSS. HRs progressively increased with increasing number of genotypes associated with worse survival, with p(trend) of 0.005 and 0.006 for PFS and BCSS, respectively. These results suggest that SNPs in genes involved in drug metabolism may influence survival outcome for patients with MBC receiving HDC and ASCT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-007-9764-8DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
drug metabolism
12
cancer specific
12
metastatic breast
8
snps genes
8
genes involved
8
involved drug
8
patients mbc
8
patients sod2-01
8
disease progression
8

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.

View Article and Find Full Text PDF

This study aimed to explore a deep learning radiomics (DLR) model based on grayscale ultrasound images to assist radiologists in distinguishing between benign breast lesions (BBL) and malignant breast lesions (MBL). A total of 382 patients with breast lesions were included, comprising 183 benign lesions and 199 malignant lesions that were collected and confirmed through clinical pathology or biopsy. The enrolled patients were randomly allocated into two groups: a training cohort and an independent test cohort, maintaining a ratio of 7:3.

View Article and Find Full Text PDF

T cell induced expression of Coronin-1A facilitates blood-brain barrier transmigration of breast cancer cells.

Sci Rep

December 2024

Department of Pathology, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Wytemaweg 80, 3000 DR, Rotterdam, The Netherlands.

In previous work we discovered that T lymphocytes play a prominent role in the rise of brain metastases of ER-negative breast cancers. In the present study we explored how T lymphocytes promote breast cancer cell penetration through the blood brain barrier (BBB). An in vitro BBB model was employed to study the effects of T lymphocytes on BBB trespassing capacity of three different breast carcinoma cell lines.

View Article and Find Full Text PDF

Background: Benzodiazepines are the third most misused medication, with many patients having their first exposure during a surgical episode. We sought to characterize factors associated with new persistent benzodiazepine use (NPBU) among patients undergoing cancer surgery.

Patients And Methods: Patients who underwent cancer surgery between 2013 and 2021 were identified using the IBM-MarketScan database.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!