A large number of genes encoding restriction-modification (R-M) systems are found in the genome of the human pathogen Helicobacter pylori. R-M genes comprise approximately 10% of the strain-specific genes, but the relevance of having such an abundance of these genes is not clear. The type II methyltransferase (MTase) M.HpyAIV, which recognizes GANTC sites, was present in 60% of the H. pylori strains analyzed, whereof 69% were resistant to restriction enzyme digestion, which indicated the presence of an active MTase. H. pylori strains with an inactive M.HpyAIV phenotype contained deletions in regions of homopolymers within the gene, which resulted in premature translational stops, suggesting that M.HpyAIV may be subjected to phase variation by a slipped-strand mechanism. An M.HpyAIV gene mutant was constructed by insertional mutagenesis, and this mutant showed the same viability and ability to induce interleukin-8 in epithelial cells as the wild type in vitro but had, as expected, lost the ability to protect its self-DNA from digestion by a cognate restriction enzyme. The M.HpyAIV from H. pylori strain 26695 was overexpressed in Escherichia coli, and the protein was purified and was able to bind to DNA and protect GANTC sites from digestion in vitro. A bioinformatic analysis of the number of GANTC sites located in predicted regulatory regions of H. pylori strains 26695 and J99 resulted in a number of candidate genes. katA, a selected candidate gene, was further analyzed by quantitative real-time reverse transcription-PCR and shown to be significantly down-regulated in the M.HpyAIV gene mutant compared to the wild-type strain. This demonstrates the influence of M.HpyAIV methylation in gene expression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168601 | PMC |
http://dx.doi.org/10.1128/JB.00108-07 | DOI Listing |
Commun Biol
February 2023
Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
While cytosine-C5 methylation of DNA is an essential regulatory system in higher eukaryotes, the presence and relevance of 6-methyladenine (m6dA) in human cells is controversial. To study the role of m6dA in human DNA, we introduced it in human cells at a genome-wide scale at GANTC and GATC sites by expression of bacterial DNA methyltransferases and observed concomitant reductions in cell viability, in particular after global GANTC methylation. We identified several genes that are directly regulated by m6dA in a GANTC context.
View Article and Find Full Text PDFBiochimie
December 2015
Institute of Biochemistry, Stuttgart University, 70569 Stuttgart, Germany. Electronic address:
CcrM-related DNA-(adenine N6)-methyltransferases play very important roles in the biology of Caulobacter crescentus and other alpha-proteobacteria. These enzymes methylate GANTC sequences, but the molecular mechanism by which they recognize their target sequence is unknown. We carried out multiple sequence alignments and noticed that CcrM enzymes contain a conserved C-terminal domain (CTD) which is not present in other DNA-(adenine N6)-methyltransferases and we show here that deletion of this part abrogates catalytic activity and DNA binding of CcrM.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2013
Department of Developmental Biology, Stanford University, Stanford, CA 94305.
The Caulobacter DNA methyltransferase CcrM is one of five master cell-cycle regulators. CcrM is transiently present near the end of DNA replication when it rapidly methylates the adenine in hemimethylated GANTC sequences. The timing of transcription of two master regulator genes and two cell division genes is controlled by the methylation state of GANTC sites in their promoters.
View Article and Find Full Text PDFNucleic Acids Res
February 2012
Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany.
The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate.
View Article and Find Full Text PDFMol Microbiol
September 2011
Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
Vegetative replication and partitioning of many plasmids and some chromosomes of alphaproteobacteria are directed by their repABC operons. RepA and RepB proteins direct the partitioning of replicons to daughter cells, while RepC proteins are replication initiators, although they do not resemble any characterized replication initiation protein. Here we show that the replication origin of an Agrobacterium tumefaciens Ti plasmid resides fully within its repC gene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!