Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.0 g K(2)HPO(4), 3.0 g KH(2)PO(4), 0.1 g MgSO(4).7H(2)O, 0.1 g (NH(4))(2)SO(4), 0.01 g CaCl(2), 0.001 g FeSO(4), 0.1 g NaCl, 1.0 g glucose, and 125 mg yeast extract per liter] containing 0.7% agar. The dendritic patterns formed by sliding translocation of nonflagellated cells are enhanced under low-nutrient conditions and require sufficient production of a biosurfactant, which appears to be repressed by PlcR. The wild-type and complemented strains failed to slide on the surface of EPS agar because of the production of low levels of biosurfactant. Precoating EPS agar surfaces with surfactin (a biosurfactant produced by Bacillus subtilis) or biosurfactant purified from the DeltaplcR mutant rescued the ability of the wild-type and complemented strains to slide. When grown on a nutrient-rich medium like Luria-Bertani agar, both the wild-type and DeltaplcR mutant strains produced flagella. The wild type was hyperflagellated and elongated and exhibited swarming behavior, while the DeltaplcR mutant was multiflagellated and the cells often formed long chains but did not swarm. Thin-layer chromatography and mass spectrometry analyses suggested that the biosurfactant purified from the DeltaplcR mutant was a lipopeptide and had a mass of 1,278.1722 (m/z). This biosurfactant has hemolytic activity and inhibited the growth of several gram-positive bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168185PMC
http://dx.doi.org/10.1128/AEM.00690-07DOI Listing

Publication Analysis

Top Keywords

deltaplcr mutant
20
cereus atcc
12
atcc 14579
12
surface translocation
8
bacillus cereus
8
low-nutrient conditions
8
wild type
8
wild-type complemented
8
complemented strains
8
eps agar
8

Similar Publications

Cell-based biosensors have been proposed for use as function-based detectors of toxic agents. We report the use of Betta splendens chromatophore cells, specifically erythrophore cells, for detection of food-associated pathogenic bacteria. Evaluation of erythrophore cell response, using Bacillus spp.

View Article and Find Full Text PDF

Bacillus cereus ATCC 14579 can respond to nutrient changes by adopting different forms of surface translocation. The B. cereus ATCC 14579 DeltaplcR mutant, but not the wild type, formed dendritic (branched) patterns on EPS [a low-nutrient medium that contains 7.

View Article and Find Full Text PDF

Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator.

Appl Environ Microbiol

July 2006

Department of Food Microbiology and Toxicology, Food Research Institute, University of Wisconsin, 1925 Willow Dr., Madison, WI 53706, USA.

The DeltaplcR mutant of Bacillus cereus strain ATCC 14579 developed significantly more biofilm than the wild type and produced increased amounts of biosurfactant. Biosurfactant production is required for biofilm formation and may be directly or indirectly repressed by PlcR, a pleiotropic regulator. Coating polystyrene plates with surfactin, a biosurfactant from Bacillus subtilis, rescued the deficiency in biofilm formation by the wild type.

View Article and Find Full Text PDF

The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient, for virulence.

J Bacteriol

May 2003

Unité Génétique Microbienne et Environnement, Institut National de la Recherche Agronomique, La Minière, 78285 Guyancourt Cedex, France.

We previously reported that Bacillus thuringiensis strain 407 Cry 32(-) secretes a zinc-requiring metalloprotease, InhA2, that is essential for virulence in orally infected insects. Analysis of the inhA2-lacZ transcriptional fusion showed that inhA2 expression is repressed in a PlcR(-) background. Using DNase I footprinting experiments, we demonstrated that PlcR activates inhA2 transcription directly by binding to a DNA sequence showing a one-residue mismatch with the previously reported PlcR box.

View Article and Find Full Text PDF

Many virulence factors are secreted by the gram-positive, spore forming bacterium Bacillus cereus. Most of them are regulated by the transcriptional activator, PlcR, which is maximally expressed at the beginning of the stationary phase. We used a proteomic approach to study the impact of the PlcR regulon on the secreted proteins of B.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!