A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intrathecal administration of proteinase-activated receptor-2 agonists produces hyperalgesia by exciting the cell bodies of primary sensory neurons. | LitMetric

Proteinase-activated receptors (PARs) are a family of G-protein-coupled receptors that are activated by endogenous serine proteinases that cleave the N-terminal domain of the receptor unmasking a "tethered ligand" sequence. Trypsin and other agonists at PAR(2) act on peripheral nerves to augment the transfer of nociceptive information. We tested whether PAR(2) agonists also exert a spinal pronociceptive effect by i.t. administering the selective ligand, Ser-Leu-Ile-Gly-Arg-Leu-NH(2) (SLI-GRL). This produced thermal and mechanical hyperalgesia in rats and mice and augmented mechanical and thermal hyperalgesia seen in the formalin inflammatory pain test. Effects of SLIGRL were abrogated in PAR(2)-deficient mice and were not seen with the inactive control peptide, Leu-Arg-Gly-Ile-Leu-Ser-NH(2). Surprisingly, electrophysiological studies, using whole-cell recording from rat substantia gelatinosa neurons, failed to demonstrate an increase in excitatory transmission or neuronal excitability following treatment with SLIGRL or trypsin. In fact, the actions of trypsin were consistent with a decrease in dorsal horn excitability. SLIGRL and trypsin did, however, depolarize and increase the excitability of large, medium and small primary afferent, dorsal root ganglion neurons. The effects were associated with an increase in conductance at hyperpolarized potentials and a decrease in conductance at depolarized potentials. PAR(2)-like immunoreactivity was found in DRG but not in spinal dorsal horn. These results suggest that activation of DRG neuron cell bodies may account for the pronociceptive actions of i.t. applied PAR(2) agonists. They also imply that pathophysiological release of PAR(2)-activating proteases in the vicinity of DRG neurons may produce profound effects on nociceptive processing in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.107.129171DOI Listing

Publication Analysis

Top Keywords

cell bodies
8
par2 agonists
8
sligrl trypsin
8
dorsal horn
8
intrathecal administration
4
administration proteinase-activated
4
proteinase-activated receptor-2
4
agonists
4
receptor-2 agonists
4
agonists produces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!