Human pathologies often originate from molecular disorders. Therefore, imaging technology as one of the bases for the identification and understanding of pathologies must provide views of single molecules at subnanometer resolution. Membrane proteins mediate many of life's most important processes, and their malfunction is often lethal or leads to severe disease. The membrane proteins aquaporin-0 (AQP0) and connexons form junctional microdomains between healthy lens core cells in which AQP0 form square arrays surrounded by connexons. Malfunction of both proteins results in the formation of cataract. We have used high-resolution atomic force microscopy (AFM) to image junctional microdomains in membranes from an individual human eye lens with senile cataract. Images at subnanometer resolution report individual helix-connecting loops of four amino acid residues on the AQP0 surface. We describe the supramolecular assembly and the conformational state of AQP0 in junctional microdomains, where a mixture of truncated junctional and full-length water channel AQP0 form square arrays. Imaging of microdomain borders revealed individual AQP0 tetramers and no associated connexon, indicating a lack of metabolite transport, waste accumulation, and enlarged regions of non-adhering membranes, causing cataract in this individual. This first high-resolution view of the membrane of this pathological human tissue provides insights into cataract pathology at the single membrane protein level, and indicates the power of the AFM as a future tool in medical imaging at subnanometer resolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2007.09.022 | DOI Listing |
ACS Nano
January 2025
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Key Laboratory of Polymer Chemistry & Physics, National Biomedical Imaging Center, Peking University, Beijing 100871, People's Republic of China.
Characterizing the structures, interactions, and dynamics of molecules in their native liquid state is a long-existing challenge in chemistry, molecular science, and biophysics with profound scientific significance. Advanced transmission electron microscopy (TEM)-based imaging techniques with the use of graphene emerged as promising tools, mainly due to their performance on spatial and temporal resolution. This review focuses on the various approaches to achieving high-resolution imaging of individual molecules and their transient interactions.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Bioengineering, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
High-resolution optical microscopy, particularly super-resolution localization microscopy, requires precise real-time drift correction to maintain constant focus at nanoscale precision during the prolonged data acquisition. Existing methods, such as fiducial marker tracking, reflection monitoring, and bright-field image correlation, each provide certain advantages but are limited in their broad applicability. In this work, a versatile and robust drift correction technique is presented for single-molecule localization-based super-resolution microscopy.
View Article and Find Full Text PDFNature
December 2024
Department of Physics, University of Missouri, Columbia, MO, USA.
Low-density lipoprotein (LDL) plays a central role in lipid and cholesterol metabolism and is a key agent in the development and progression of atherosclerosis, the leading cause of mortality worldwide. Apolipoprotein B100 (apoB100), one of the largest proteins in the genome, is the primary structural and functional component of LDL, yet its size and complex lipid associations have posed major challenges for structural studies. Here we present the first structure of apoB100 resolved to sub-nanometer resolution in most regions using an integrative approach of cryo-electron microscopy, AlphaFold2, and molecular dynamics-based refinement.
View Article and Find Full Text PDFNanophotonics
September 2024
School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, 210023, Nanjing, China.
Spectroscopy is a technique that analyzes the interaction between matter and light as a function of wavelength. It is the most convenient method for obtaining qualitative and quantitative information about an unknown sample with reasonable accuracy. However, traditional spectroscopy is reliant on bulky and expensive spectrometers, while emerging applications of portable, low-cost and lightweight sensing and imaging necessitate the development of miniaturized spectrometers.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Hefei National Research Center for Physical Sciences at the Microscale and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Resolving the sequence and structure of flexible biomolecules such as DNA is crucial to understanding their biological mechanisms and functions. Traditional structural biology methods remain challenging for the analysis of small and disordered biomolecules, especially those that are difficult to label or crystallize. Recent development of single-molecule tip-enhanced Raman spectroscopy (TERS) offers a label-free approach to identifying nucleobases in a single DNA chain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!