We recently discovered that human activity possesses a complex temporal organization characterized by scale-invariant/self-similar fluctuations from seconds to approximately 4 h-(statistical properties of fluctuations remain the same at different time scales). Here, we show that scale-invariant activity patterns are essentially identical in humans and rats, and exist for up to approximately 24 h: six-times longer than previously reported. Theoretically, such scale-invariant patterns can be produced by a neural network of interacting control nodes-system components with feedback loops-operating at different time scales. However such control nodes have not yet been identified in any neurophysiological model of scale invariance/self-similarity in mammals. Here we demonstrate that the endogenous circadian pacemaker (suprachiasmatic nucleus; SCN), known to modulate locomotor activity with a periodicity of approximately 24 h, also acts as a major neural control node responsible for the generation of scale-invariant locomotor patterns over a broad range of time scales from minutes to at least 24 h (rather than solely at approximately 24 h). Remarkably, we found that SCN lesion in rats completely abolished the scale-invariant locomotor patterns between 4 and 24 h and significantly altered the patterns at time scales <4 h. Identification of the control nodes of a neural network responsible for scale invariance is the critical first step in understanding the neurophysiological origin of scale invariance/self-similarity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759975 | PMC |
http://dx.doi.org/10.1016/j.neuroscience.2007.03.058 | DOI Listing |
J Cancer Surviv
January 2025
Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.
Purpose: Radiotherapy (RT) for oropharyngeal cancer (OPC) can lead to late toxicity. Fatigue is a known debilitating issue for many cancer survivors, yet prevalence and severity of long-term fatigue in patients treated for OPC is unknown.
Method: As part of a mixed-methods study, fatigue in OPC patients ≥ 2 years post RT + / - chemotherapy was evaluated.
J Phys Chem Lett
January 2025
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.
Ethylene glycol dinitrate (EGDN) is a nitrate ester explosive widely used in military ordnance and missile systems. This study investigates the decomposition dynamics of the EGDN cation using a comprehensive approach that combines femtosecond time-resolved mass spectrometry (FTRMS) experiments with electronic structure and molecular dynamics computations. We identify three distinct dissociation time scales for the metastable EGDN cation of approximately 40-60 fs, 340-450 fs, and >2 ps.
View Article and Find Full Text PDFMov Disord
January 2025
Department of Neurology, Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
Background: Spinocerebellar ataxia type 3 (SCA3) is a neurodegenerative disorder, with balance instability as a feature of the disease. Balance instability often manifests before the onset of obvious ataxic symptoms in patients. However, current clinical scales exhibit limited sensitivity in characterizing changes in pre-ataxic patients.
View Article and Find Full Text PDFHeadache
January 2025
Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
Objective: Our primary objective was to evaluate the safety and feasibility of transcranial direct current stimulation combined with exercise therapy for the treatment of cervicogenic headache. Our exploratory objectives compared symptoms of headache, mood, pain, and quality of life between active and sham transcranial direct stimulation combined with exercise therapy.
Background: Cervicogenic headache arises from injury to the cervical spine or degenerative diseases impacting cervical spine structure resulting in pain, reduced quality of life, and impaired function.
Glob Chang Biol
January 2025
Departament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, Girona, Spain.
Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!