Malignant melanoma is a highly aggressive tumor which frequently resists chemotherapy, therefore, the search for new agents for its treatment is of great importance. In this study, we purified the sesquiterpene lactones (SLs), Tomentosin and Inuviscolide from Inula viscosa (Compositae) leaves and studied their anti-cancer potency against human melanoma cell lines in order to develop new agents for melanoma treatment. SLs inhibited the proliferation of three human melanoma cell lines: SK-28, 624 mel and 1363 mel in a dose-dependent manner. We further investigated SLs mechanism of action using SK-28 as a representative cell line model. SLs caused cell-cycle arrest at G(2)/M, accompanied by the appearance of a sub-G0 fraction, indicative of apoptotic cell death. Induction of apoptosis was further confirmed by changes in membrane phospholipids, changes in mitochondrial membrane potential (DeltaPsi) and by detection of Caspase-3 activity. Rapid inhibitory phosphorylation of Cdc2 (Thr14 and Tyr15) was seen early after treatment, followed by a later decrease in the expression level of both Cyclin b1 and Cdc2. Induction of p53 and p21(waf1) proteins and phosphorylation of p53 at Ser15 were also detected early after treatment. The anti-apoptotic proteins, p65 subunit of nuclear factor kappaB (NF-kappaB), and Survivin were reduced in a dose-dependent manner. Taken together, these changes partially explain the ability of the SLs to induce G(2)/M arrest and apoptosis. Induction of apoptosis by Tomentosin and Inuviscolide in human aggressive melanoma cell lines has high pharmacological value and implies that SLs might be developed as new agents for melanoma treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2007.08.024 | DOI Listing |
Sci Rep
December 2024
Interventional Oncology, Johnson & Johnson Enterprise Innovation, Inc, 10th Floor 255 Main St, 02142, Cambridge, Boston, MA, USA.
The introduction of anti-PD-1/PD-L1 therapies revolutionized treatment for advanced non-small cell lung cancer (NSCLC), yet response rates remain modest, underscoring the need for predictive biomarkers. While a T cell inflamed gene expression profile (GEP) has predicted anti-PD-1 response in various cancers, it failed in a large NSCLC cohort from the Stand Up To Cancer-Mark (SU2C-MARK) Foundation. Re-analysis revealed that while the T cell inflamed GEP alone was not predictive, its performance improved significantly when combined with gene signatures of myeloid cell markers.
View Article and Find Full Text PDFCancer Cell Int
December 2024
Department of Plastic and Aesthetic Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
Background: Cutaneous melanoma is one of the most invasive and lethal skin malignant tumors. Compared to primary melanoma, metastatic melanoma (MM) presents poorer treatment outcomes and a higher mortality rate. The tumor microenvironment (TME) plays a critical role in MM progression and immunotherapy resistance.
View Article and Find Full Text PDFFitoterapia
December 2024
Department of Chemistry, Universidade Tecnológica Federal do Paraná (UTFPR), Pato Branco, PR 85503-390, Brazil.
This study investigated the antihyperglycemic potential of a hydroalcoholic extract from Syzygium malaccense leaves (E-SM) and isolate phenolic compounds with antioxidant and cytotoxic activities through a bioguided assay. The aim was to explore the therapeutic properties of S. malaccense in managing hyperglycemia and oxidative stress-related conditions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Melanoma, recognized as one of the most aggressive forms of skin cancer, continues to show a steady rise in global incidence. While Bacillus Calmette-Guérin (BCG) has been identified as a potential intralesional therapy for melanoma, its therapeutic efficacy remains suboptimal. This study introduces a novel thermosensitive hydrogel formulated with BCG lysates and either OVA peptide or tumor cell lysates (PPP-BCG-OVA/TL).
View Article and Find Full Text PDFLung Cancer
December 2024
Coordinating Center, ETOP IBCSG Partners Foundation, Bern, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!