Low levels of somatic mutations accumulate in mitochondrial DNA (mtDNA) as we age; however, the pathogenic nature of these mutations is unknown. In contrast, mutational loads of >30% of mtDNA are associated with electron transport chain defects that result in mitochondrial diseases such as mitochondrial encephalopathy lactic acidosis and stroke-like episodes. Pancreatic beta-cells may be extremely sensitive to the accumulation of mtDNA mutations, as insulin secretion requires the mitochondrial oxidation of glucose to CO(2). Type 2 diabetes arises when beta-cells fail to compensate for the increased demand for insulin, and many type 2 diabetics progress to insulin dependence because of a loss of beta-cell function or beta-cell death. This loss of beta-cell function/beta-cell death has been attributed to the toxic effects of elevated levels of lipids and glucose resulting in the enhanced production of free radicals in beta-cells. mtDNA, localized in close proximity to one of the major cellular sites of free radical production, comprises more than 95% coding sequences such that mutations result in changes in the coding sequence. It has long been known that mtDNA mutations accumulate with age; however, only recently have studies examined the influence of somatic mtDNA mutation accumulation on disease pathogenesis. This article will focus on the effects of low-level somatic mtDNA mutation accumulation on ageing, cardiovascular disease and diabetes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1463-1326.2007.00776.x | DOI Listing |
J Mol Diagn
January 2025
Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China. Electronic address:
Previous studies have reported that mtDNA-CN of blood was associated with a series of aging-related diseases. However, it remains unknown whether mtDNA-CN can be a potential biomarker of acute aortic syndromes (AAS). The mtDNA-CN in blood of 190 male patients with AAS and 207 healthy controls were detected by standardized qPCR-based assay.
View Article and Find Full Text PDFBMC Biol
January 2025
Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
Background: Plant mitochondrial genomes (mitogenomes) exhibit extensive structural variation yet extremely low nucleotide mutation rates, phenomena that remain only partially understood. The genus Gossypium, a globally important source of cotton, offers a wealth of long-read sequencing resources to explore mitogenome and plastome variation and dynamics accompanying the evolutionary divergence of its approximately 50 diploid and allopolyploid species.
Results: Here, we assembled 19 mitogenomes from Gossypium species, representing all genome groups (diploids A through G, K, and the allopolyploids AD) based on a uniformly applied strategy.
Sci Adv
January 2025
Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
bioRxiv
December 2024
Department of Biology, Penn State University, University Park, PA 16802, USA.
Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age.
View Article and Find Full Text PDFbioRxiv
December 2024
Pacific Northwest Research Institute, Seattle, Washington, USA.
Bivalve transmissible neoplasia (BTN) is one of three known types of naturally transmissible cancer-cancers in which the whole cancer cells move from individual to individual, spreading through natural populations. BTN is a lethal leukemia-like cancer that has been observed throughout soft-shell clam () populations on the east coast of North America, with two distinct sublineages circulating at low enzootic levels in New England, USA, and Prince Edward Island, Canada. Major cancer outbreaks likely due to BTN (MarBTN) were reported in 1980s and the 2000s and the disease has been observed since the 1970s, but it has not been observed in populations of this clam species on the US west coast.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!