Chemiluminescent detection of neutral gaseous radicals.

J Chem Phys

Department of Physics, Azov State Technical University, School Physics and Mathematics, Mariupol 87500, Ukraine.

Published: October 2007

This paper presents a systematic approach to the development of novel solid-state chemical sensors on the basis of heterogeneous chemiluminescence. The method is applicable for the identification and measurements of concentration of H, O, and other gaseous chemical radicals, where utilization of standard techniques is difficult. The luminescence is invoked during Eley-Rideal recombination of the radicals in question on the surface of the sensor core. A technique is discussed to separate the contributions of Eley-Rideal and Langmuir-Hinshelwood mechanisms, and to select appropriate materials for the sensor emitter fabrication. Typical sensor characteristics include sensitivity of 10(5) cm(-3), working gas pressures of 10(-8) - 10(1) Torr, and measurement time approximately 1 s.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.2781387DOI Listing

Publication Analysis

Top Keywords

chemiluminescent detection
4
detection neutral
4
neutral gaseous
4
gaseous radicals
4
radicals paper
4
paper presents
4
presents systematic
4
systematic approach
4
approach development
4
development novel
4

Similar Publications

Highly Selective AIEgen-Based "Turn On" Fluorescent Imaging for Inflammation Detection.

Luminescence

January 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.

Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.

View Article and Find Full Text PDF

Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.

View Article and Find Full Text PDF

Protective mechanism of safflower yellow injection on myocardial ischemia-reperfusion injury in rats by activating NLRP3 inflammasome.

BMC Complement Med Ther

January 2025

Institute of Basic Medical Sciences of Xiyuan Hospital, Beijing Key Laboratory of Chinese Materia Pharmacology, China Academy of Chinese Medical Sciences, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China.

Objectives: This study intended to explore whether the protective effect safflower yellow injection (SYI) on myocardial ischemia-reperfusion (I/R) injury in rats mediated of the NLRP3 inflammasome signaling.

Methods: The I/R model was prepared by ligating the left anterior descending coronary artery for 45 min and then releasing the blood flow for 150 min. 96 male Wistar rats were randomly divided into sham group, I/R group, Hebeishuang group (HBS), SYI high-dose group (I/R + SYI-H), SYI medium-dose group (I/R + SYI-M) and SYI low-dose group (I/R + SYI-L).

View Article and Find Full Text PDF

Intramolecular distance-regulated G4 DNA enzymatic activity-based chromophotometric system for visual monitoring of diquat.

Anal Chim Acta

January 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China. Electronic address:

Background: As global food production continues to surge, the widespread use of herbicides has also increased concurrently, posing challenges like health risks and environmental pollution. Traditional detection methods for pesticide residues, such as diquat (DQ), were hampered by limitations like high expenses, lengthy detection times and complex operations, restricting their practical application in rapid clinical diagnosis.

Results: In light of the pressing necessity for the identification of minute pesticide residues and the intrinsic constraints of small molecule analysis, a novel chromophotometric biosensor targeting small molecules was developed based on bi-epitopes on single antibody to immobilize two DQ-PAL, inhibiting the hybridization of DQ-PAL.

View Article and Find Full Text PDF

Background: The unregulated use of pesticides by farmers, for crop productivity results in widespread contamination of organophosphates in real environmental samples, which is a growing societal concern about their potential health effects. The conventional approaches for the monitoring these organophosphate-based pesticides which include immunoassays, electrochemical methods, immunosensors, various chromatography techniques, along with some spectroscopic methods, are either costly, sophisticated, or involves the use of different metal complexes. Therefore, there is an urgent need for sensitive, quick, and easy-to-use detection techniques for the screening of widely used organophosphate-based pesticides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!