The MgBr2.OEt2-mediated intramolecular allylation of a 4:1 diastereoisomeric mixture of the alpha-chloroacetoxyl ether 1a bearing the A-G/JK ring system of brevetoxin B in CH2Cl2 gave a 1:1 diastereoisomeric mixture of the trans- and cis-cyclization products 4a and 5a having the A-G/I-K ring system, while that in CH3CN afforded the trans-isomer 4a nearly as the single product. To help clarify a reason for this marked solvent effect in the cyclization of the brevetoxin B precursor, DFT computations for the starting materials, intermediates, transition states, and products were carried out. The cyclization would proceed through a carbocation intermediate 3a having sp2 flat structure (SN1 type mechanism) in CH2Cl2, in which the activation energies leading to both diastereoisomers are approximately identical, while in CH3CN alkylnitrilium salts 6a would be formed through the coordination of CH3CN to the carbocation leading to an sp3-type intermediate in which sever steric hindrance takes place in the transition state leading to the undesired diastereoisomer. The scope of this novel solvent-controlled stereoselectivity was tested for simple compounds. In small model compounds the marked solvent dependence was absent, but the model bearing two consecutive cyclic ether rings 1b exhibited a remarkable solvent effect similar to that observed in the brevetoxin B system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jo7013752DOI Listing

Publication Analysis

Top Keywords

cyclic ether
8
diastereoisomeric mixture
8
ring system
8
marked solvent
8
solvent-controlled stereoselective
4
stereoselective formation
4
formation cyclic
4
ether
4
ether lewis
4
lewis acid-mediated
4

Similar Publications

Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.

View Article and Find Full Text PDF

This report documents complications in false pilchard Harengula clupeola and scad Decapterus macarellus associated with a salinomycin (60 mg kg-1) and amprolium (100 mg kg-1) gel feed treatment, along with prolonged temperature increase, for an Enteromyxum leei outbreak in a salt water, mixed species, public aquarium exhibit. Shortly after administration, a mass mortality event ensued where hundreds of false pilchards and a few scad died. Medicated gel feed was noted within the gastrointestinal tracts of all affected fish.

View Article and Find Full Text PDF

The systematic nucleophilic functionalization of the cationic pentaphosphole ligand complex [Cp*Fe(η4-P5Me)][OTf] (A) with group 16/17 nucleophiles is reported. This method represents a highly reliable and versatile strategy for the design of novel transition-metal complexes featuring twofold substituted end-deck cyclo-P5 ligands, bearing unprecedented hetero-element substituents. By the reaction of A with classical group 16 nucleophiles, complexes of the type [Cp*Fe(η4-P5MeE)] (E = OEt (1), OtBu (2), SPh (3), SePh (4)) are obtained.

View Article and Find Full Text PDF

In multiple sclerosis (MS), microglia and macrophages within the central nervous system (CNS) play an important role in determining the balance among demyelination, neurodegeneration, and myelin repair. Phagocytic and regenerative functions of these CNS innate immune cells support remyelination, whereas chronic and maladaptive inflammatory activation promotes lesion expansion and disability, particularly in the progressive forms of MS. No currently approved drugs convincingly target microglia and macrophages within the CNS, contributing to the lack of therapies aimed at promoting remyelination and slowing disease progression for individuals with MS.

View Article and Find Full Text PDF

Isolation of Inner-Sphere Aquo Complexes of Samarium(II).

J Am Chem Soc

January 2025

Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.

The and isomers of [Sm(dicyclohexano-18-crown-6)(HO)]I exhibiting water molecules bound to the Sm ion have been isolated and characterized. Sm possesses an electrochemical potential sufficient for water reduction, and thus these complexes add to the recent body of evidence that the oxidation of Sm by water can operate by a mechanism that is not straightforward. These complexes are obtained by the direct addition of stoichiometric amounts of water to solutions of the respective Sm(dicyclohexano-18-crown-6)I isomers under an inert atmosphere.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!