The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in more moist localities we hypothesize that the proportion of drought-sensitive species would increase in richer localities, due to a higher likelihood of co-occurrence of species that share moist climatic requirements. The study points to the convenience of considering the causes of disturbance in relation to current environmental gradients and historical environmental constraints on the community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1890/06-1195.1 | DOI Listing |
Environ Monit Assess
January 2025
Department of Natural Resource Management, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia.
Assessing the impacts of forest cover change on carbon stock and soil moisture dynamics is critical for understanding environmental degradation and guiding sustainable land management. This study evaluates the effects of forest cover change on carbon stock and soil moisture dynamics in Nensebo Forest from 1993 to 2023 using geospatial techniques. Landsat imagery including TM (1993), ETM + (2009), and OLI/TIRS (2023) were used.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Agricultural, Food and Environmental Sciences Università Politecnica delle Marche Ancona Italy.
This study investigates climate change impacts on spontaneous vegetation, focusing on the Mediterranean basin, a hotspot for climatic changes. Two case study areas, Monti Sibillini (central Italy, temperate) and Sidi Makhlouf (Southern Tunisia, arid), were selected for their contrasting climates and vegetation. Using WorldClim's CMCC-ESM2 climate model, future vegetation distribution was predicted for 2050 and 2080 under SSP 245 (optimistic) and 585 (pessimistic) scenarios.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Geography & Environmental Studies, Arba-Minch University, Arba Minch City, Ethiopia.
Understanding land use/land cover (LULC) changes is crucial for informing policymakers and planners on the dynamics affecting environmental and resource management. Most past studies highlighted the significance of LULC changes and their driving forces in various locations. However, comprehensive analyses that combine the impact of land management technologies (LMTs) on LULC changes using GIS and remote sensing tools have not been widely addressed.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Universidad Nacional de Córdoba - Facultad de Ciencias Agropecuarias, X5000HUA, Córdoba, Argentina.
Landscape metrics (LM) play a crucial role in fields such as urban planning, ecology, and environmental research, providing insights into the ecological and functional dynamics of ecosystems. However, in dynamic systems, generating thematic maps for LM analysis poses challenges due to the substantial data volume required and issues such as cloud cover interruptions. The aim of this study was to compare the accuracy of land cover maps produced by three temporal aggregation methods: median reflectance, maximum normalised difference vegetation index (NDVI), and a two-date image stack using Sentinel-2 (S2) and then to analyse their implications for LM calculation.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, 2000, South Africa.
The grassland ecosystem forms a critical part of the natural ecosystem, covering up to 15-26% of the Earth's land surface. Grassland significantly impacts the carbon cycle and climate regulation by storing carbon dioxide. The organic matter found in grassland biomass, which acts as a carbon source, greatly expands the carbon stock in terrestrial ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!