Background: Endocarditis, and prosthetic valve endocarditis in particular, is a serious disease with high morbidity and mortality. We investigate the effects of tigecycline, linezolid and vancomycin on biofilms of viridans group streptococci (VGS) isolated from patients with definite native or prosthetic valve endocarditis.
Methods And Results: Ten of 20 VGS blood stream isolates from patients with endocarditis formed biofilms in the microtiter plate biofilm model. The minimal inhibitory concentrations (MIC) for tigecycline, linezolid and vancomycin were determined using the microdilution broth method. Biofilms were grown for 24 hours and were incubated with tigecycline, linezolid and vancomycin at increasing concentrations from 1-128x MIC of the isolate being tested. Biofilm thickness was quantified by measuring the optical density (OD) after dyeing it with crystal violet. The incubation of the biofilms with tigecycline, linezolid or vancomycin resulted in a significant reduction of OD compared to the control biofilm without antibiotic (p<0.05). The optical density ratio (Odr) decreased significantly at 2x MIC for tigecycline, and at 8x MIC for linezolid and vancomycin (p<0.05). Although biofilms persisted even at the highest antibiotic concentrations of 128x MIC, bacterial growth was eradicated starting at concentrations of 16x MIC for vancomycin and of 32x MIC for linezolid, but not for tigecycline, up to a concentration of 128x MIC.
Conclusions: In the present study on viridans streptococci isolated from patients with endocarditis, tigecycline and linezolid reduced the density of the biofilms as effectively as vancomycin. However, linezolid and vancomycin were bactericidal at higher concentrations. Linezolid and vancomycin at very high doses may be useful in the treatment of biofilm-associated diseases caused by VGS infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/039139880703000909 | DOI Listing |
Eur J Clin Microbiol Infect Dis
January 2025
Neonatal Department of Longyan Division, Tianjin Children's Hospital, Tianjin University Children's Hospital, Tianjin, China.
Objectives: Neonatal sepsis is one of the causes of neonatal mortality and bacterial resistance to antibiotics is one of the challenges facing NICU. The aim of this study was to provide a basis for empirical antibiotic selection by comprehensively searching Chinese and non-Chinese databases for studies related to neonatal sepsis pathogenesis conducted in China and synthesizing all the results of the studies conducted in hospitals in China during the period under study METHODS: In this study, we conducted extensive searches of Pubmed, Web of Science, Cochrane, China Biology Medicine disc (SinoMed), China National Knowledge Infrastructure (CNKI) and Wanfang Data. We screened studies published from 2014 to 2023 that were conducted in hospitals in mainland China and involved bacterial blood cultures and susceptibility tests in neonates with neonatal sepsis and extracted the data, which were summarized using Stata 18.
View Article and Find Full Text PDFFront Antibiot
August 2024
The Medical School, University of Jordan, Amman, Jordan.
Objectives: To evaluate the antimicrobial susceptibilities of Gram-positive and Gram-negative isolates from patients in Jordan between 2010 and 2021, through the Antimicrobial Testing Leadership and Surveillance (ATLAS) programme.
Methods: Medical centres in Jordan collected bacterial isolates from hospitalised patients with defined infection sources between 2010 and 2021 (no isolates collected in 2014). Antimicrobial susceptibility was interpreted using CLSI standards.
Klin Mikrobiol Infekc Lek
March 2024
Institute of Microbiology, Faculty of Medicine, Palacky University in Olomouc, Czech Repubic, e-mail:
Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).
Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.
Background: Group B streptococcus (GBS) causes neonatal invasive disease, mainly sepsis and meningitis. Understanding the clinical characteristics, laboratory tests, and antibiotic resistance patterns of GBS invasive infections provides reliable epidemiological data for preventing and treating GBS infections.
Methods: Clinical characteristics and laboratory test results from 86 patients with neonatal invasive disease (45 cases of early-onset disease [EOD] and 41 cases of late-onset disease [LOD]) recruited from Fujian Maternity and Child Health Hospital between January 2012 and December 2021 were analyzed.
Background: Due to its increasing prevalence and suboptimal treatment, non-tuberculous mycobacterial (NTM) infection is an emerging problem in patients with cystic fibrosis (CF). Detailed description of regional NTM prevalence and distribution, and identification of predictors of NTM acquisition in CF are essential to optimise treatment and surveillance guidelines.
Methods: A retrospective, multi-center analysis was conducted between the years 2020 and 2022 on data from 232 adult patients registered in the Hungarian CF Registry in 2022.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!