A large Danish family has previously been reported in which autosomal dominant frontotemporal dementia (FTD) is genetically linked to chromosome 3 (FTD-3). A mutation was recently identified in the CHMP2B gene that is probably responsible for causing disease in this family. Because of its neuropathologic findings, FTD-3 was originally categorized as a subtype of frontotemporal lobar degeneration, termed "dementia lacking distinctive histopathology." We now report a reevaluation of the neuropathologic changes in this family. Postmortem material from 4 affected family members was available for examination. Gross examination revealed generalized cortical atrophy that was most severe in frontal and temporal cortices. Microscopy showed loss of cortical neurons, microvacuolation of layer II, mild gliosis, and demyelination of the deep white matter. Results of immunohistochemical staining for alpha-synuclein, prion protein, neurofilament, and tau protein were unremarkable. Variable numbers of small, round, ubiquitin-positive cytoplasmic inclusions were present in the dentate granule layer of the hippocampus in all 4 cases. Rare ubiquitin-positive inclusions were also found in frontal and temporal cortical neurons. These inclusions were also positive for p62 but not for TDP-43. The finding of ubiquitin- and p62-positive, TDP-43-negative cytoplasmic inclusions in the hippocampus and neocortex suggests reclassification of the neuropathology of FTD-3 as a unique subtype of frontotemporal lobar degeneration with ubiquitin-positive inclusions that are TDP-43-negative.

Download full-text PDF

Source
http://dx.doi.org/10.1097/nen.0b013e3181567f02DOI Listing

Publication Analysis

Top Keywords

frontotemporal dementia
8
linked chromosome
8
subtype frontotemporal
8
frontotemporal lobar
8
lobar degeneration
8
frontal temporal
8
cortical neurons
8
cytoplasmic inclusions
8
ubiquitin-positive inclusions
8
inclusions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!