When a human leukemic cell line, HT93 was incubated with all-trans retinoic acid (ATRA), IL-5, or both, this cell line was differentiated into eosinophic lineage, in that an eosinophilic specific granule proteins, major basic protein (MBP) and eosinophil peroxidase (EPO) appeared. Both CD11b and CC chemokine receptor, CCR3 expression were upregulated, while CD71 expression was downregulated by ATRA or ATRA+IL-5. Concomitantly, marked production of eotaxin-2/CCL24 was observed, but no production of eotaxin-1/CCL11 and eotaxin-3/CCL26 was detected. Since only 20 to 30% cells incubated with ATRA became positive for CCR3, CCR3(+) population was enriched by a magnetic activated cell sorter (MACS). Enriched CCR3(+) population produced higher eotaxin-2/CCL24 than the CCR3(-) population, indicating that differentiated eosinophils are capable of producing eotaxin-2/CCL24. During the ATRA-induced differentiation, expression of a transcriptional factor, GATA-1 was significantly increased. Introduction of siRNA against GATA-1 markedly reduced the ATRA-induced differentiation markers including CD11b and CCR3, as well as reduced eotaxin-2/CCL24 production. Finally, ATRA-induced differentiation and eotaxin-2/CCL24 production were greatly enhanced in the GATA-1-overexpressed clones. These results indicate that the ability to produce eotaxin-2/CCL24 is acquired during the differentiation into eosinophilic lineage which is dependent on GATA-1 expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1248/bpb.30.1826 | DOI Listing |
PLoS One
December 2024
Department of Hematology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
Aims: Acute promyelocytic leukemia (APL) progresses quickly and often leads to early hemorrhagic death. Treatment with all-trans retinoic acid (ATRA) promotes differentiation of APL cells and clinical remission, making APL a potentially curable malignancy. Understanding how ATRA works may lead to new treatments for other types of leukemia.
View Article and Find Full Text PDFNeurochem Int
December 2024
Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, 150081, China; Department of Neurobiology, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, 150081, China. Electronic address:
Neuronal differentiation and neurite growth are essential processes in nervous system development and are regulated by several factors. Although all-trans retinoic acid (ATRA) has been shown to mediate the differentiation of mouse neuroblastoma cells via the activation of several pathways, including Wnt/β-catenin signaling, the mechanism remains unclear. The pyruvate kinase, muscle (PKM) plays an important role in the glycolysis of neuroblastoma cells and regulates the Wnt signaling pathway in various cancer cells.
View Article and Find Full Text PDFMol Cell
November 2024
Shenzhen Bay Laboratory, Shenzhen, China. Electronic address:
N,2'-O-dimethyladenosine (mAm) is an abundant mRNA modification that impacts multiple diseases, but its function remains controversial because the mAm reader is unknown. Using quantitative proteomics, we identified transcriptional terminator premature cleavage factor II (PCF11) as a mAm-specific reader in human cells. Direct quantification of mature versus nascent RNAs reveals that mAm does not regulate mRNA stability but promotes nascent transcription.
View Article and Find Full Text PDFAnim Biosci
August 2024
College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
Objective: The active metabolite of vitamin A, all-trans retinoic acid (ATRA), is involved in the proliferation and differentiation of granulosa cells, and promotes the follicular development, oocyte maturation, and ovulation in mammals. This study aims to investigate the ATRA induced potential long noncoding RNAs (lncRNAs) that regulate the expression of genes associated with granulosa cell proliferation and follicular development.
Methods: The lncRNA and mRNA profiles of porcine granulosa cells from ATRA treatment and control group in vitro were constructed through RNA sequencing.
Int J Mol Sci
July 2024
Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!