This experiment was designed to investigate the histological and lipid peroxidation effects of chronic fluorosis on testes tissues of first- and second-generation rats. Sixteen virgin female Wistar rats were mated with eight males (2:1) for approximately 12 h to obtain first-generation rats. Pregnant rats were divided into two groups: controls and fluoride-given group, each of which containing five rats. Pregnant rats in the fluoride-given group were exposed to a total dose of 30 mg/l sodium fluoride (NaF) in commercial drinking water containing 0.07 mg/l of NaF throughout the gestation and lactation periods. After the lactation period, the young animals (first generation, F1) were exposed to the same dose of NaF in drinking water for 4 months. At the end of the 4 months of experimental period, nine randomly chosen male rats (F1) were killed and testes tissues were taken for histopathological and biochemical analysis. The remaining eight female rats were mated with four males (2:1) for approximately 12 h to obtain second-generation rats. Six female were identified as pregnant and treated with similarly throughout the gestation and the lactation periods. After the lactation period, the young male animals (second generation, F2) were also treated in the same way for 4 months. At the end of the 4 months of experimental period, nine randomly chosen male rats (F2) were killed and testes tissues were collected for histopathological and biochemical analysis. The rats in the control group were applied the same procedure without NaF administration. In biochemical analysis of the fluoride given F1 and F2 rats, it has been found that plasma fluoride levels and testes thiobarbituric acid reactive substance levels were significantly increased when compared with the control group. In F1 and F2 rats, similar histopathological changes were observed. In both groups, spermatogenesis was severely reduced. Spermatogonia and primary spermatocytes were normal, however, there was a widespread degeneration in other spermatogenic cell lines of the seminiferous epithelium. The histological structures of the Sertoli and interstitial Leydig cells were normally observed. It is concluded that chronic fluorosis exposure leads to a remarkable destruction in testes tissues of F1 and F2 rats via lipid peroxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12011-007-0036-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!