[Evaluation of the in vitro activity of two betalactams on the oxidative metabolism of polymorphonuclear neutrophils].

Pathol Biol (Paris)

Laboratoire de bactériologie clinique, faculté de pharmacie de Lille, 3, rue du Professeur-Laguesse, BP 83, 59006 Lille cedex, France.

Published: November 2007

Study Aims: The aim was to evaluate the in vitro effects of amoxicillin and its combination with clavulanic acid, two beta-lactams intravenously injected, on the oxidative metabolism of polymorphonuclear neutrophils. These cells play the major role in the "respiratory burst" as they produce superoxide anion to kill the infectious agent. An activation of this process by the injected antibiotics could enhance the bactericidal action or explain some of adverse effects.

Materials And Methods: Two models were used to estimate the O(2)(-) amounts produced in the presence of the antimicrobial agents. In the cellular model, O(2)(-) was generated by neutrophils artificially stimulated or not (separated by a gradient centrifugation through Histopaque 1077). In the acellular model, O(2)(-) was produced by the xanthine-xanthine oxidase system. O(2)(-) was measured by spectrophotometry using the ferricytochrome C reduction.

Results: The O(2)(-) production by polymorphonuclear neutrophils was increased when both antibiotics were added to the reaction mixture. A significant activation of the cell oxidative metabolism was observed with amoxicillin using various stimulating agents, that was higher without stimulation and lower when amoxicillin and clavulanic acid were associated.

Conclusion: Amoxicillin could either activate polymorphonuclear neutrophils NADPH-oxidase or cause its activation by a membrane effect, or interfere with the zymosan activation way. It could then be supposed that this antimicrobial agent intensified the bactericidal effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.patbio.2007.06.009DOI Listing

Publication Analysis

Top Keywords

oxidative metabolism
12
polymorphonuclear neutrophils
12
metabolism polymorphonuclear
8
clavulanic acid
8
model o2-
8
o2-
5
[evaluation vitro
4
vitro activity
4
activity betalactams
4
betalactams oxidative
4

Similar Publications

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Human papillomavirus (HPV)‑positive and -negative head and neck squamous cell carcinoma (HNSCC) are often associated with activation of the phosphatidylinositol 3‑kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway due to mutations or amplifications in , loss of or activation of receptor tyrosine kinases. In HPV‑negative tumors, (encoding p16 protein) inactivation or (encoding Cyclin D1 protein) amplification frequently results in sustained cyclin‑dependent kinase (CDK) 4/6 activation. The present study aimed to investigate the efficacy of the CDK4/6 inhibitors (CDKi) palbociclib and ribociclib, and the PI3K/Akt/mTOR pathway inhibitors (PI3Ki) gedatolisib, buparlisib and alpelisib, in suppressing cell viability of HPV‑positive and ‑negative HNSCC cell lines.

View Article and Find Full Text PDF

Intracellular CIRP promotes liver regeneration via STAT3 signaling pathway activation after partial hepatectomy in mice.

Int J Mol Med

March 2025

National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China.

Cold‑inducible RNA‑binding protein (CIRP) is a cold shock protein implicated in the regulation of multiple biological processes depending on its cellular localization. However, to the best of our knowledge, the role of CIRP in liver regeneration and injury after hepatectomy has not been investigated. The present study was therefore designed to explore whether CIRP is involved in liver regeneration after hepatectomy and its specific role and underlying molecular mechanism.

View Article and Find Full Text PDF

Fecal microbiota transplantation (FMT) could significantly alter the recipient's gut bacteria composition and attenuate obesity and obesity-related metabolic syndromes. DL-norvaline is a nonproteinogenic amino acid and possesses anti-obesity potential. However, the specific mechanisms by which gut microbiota might mediate beneficial effects of DL-norvaline have not been completely elucidated.

View Article and Find Full Text PDF

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!