The potential of topical DNA vaccines adjuvanted by cytokines.

Expert Opin Biol Ther

Genetic Immunity, FO utca 68, H-1027 Budapest, Hungary.

Published: October 2007

AI Article Synopsis

  • DNA immunization can be enhanced by targeting epidermal Langerhans cells for better delivery of antigen-encoding plasmid DNA.
  • Topical vaccination with naked plasmid DNA generates immune responses, and using chemical and physical methods increases delivery efficiency into the skin.
  • Cytokines are being explored as adjuvants for DNA vaccines to boost immune responses, particularly in combination with the DermaVir Patch vaccine, which delivers nanoparticle-formulated plasmid DNA to stimulate memory T cell formation.

Article Abstract

To improve the efficacy of DNA immunization epidermal Langerhans cells are attractive targets to deliver antigen-encoding plasmid DNA. Topical vaccination with naked plasmid DNA has been shown to induce immune responses, and their potency might be improved by chemical and physical methods aimed to enhance the efficiency of plasmid DNA delivery into the skin. Cytokines have also been evaluated as adjuvants for DNA vaccines because they influence the host immune response. This review focuses on the action of several cytokines tested as molecular adjuvants for DNA vaccines and the combination of them with the DermaVir Patch vaccine. DermaVir vaccine, topically administered under a patch, consists of a plasmid DNA that is chemically formulated into a nanoparticle to support vaccine delivery into epidermal Langerhans cells and to induce antigen-specific memory T cells.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14712598.7.10.1563DOI Listing

Publication Analysis

Top Keywords

plasmid dna
16
dna vaccines
12
dna
8
epidermal langerhans
8
langerhans cells
8
adjuvants dna
8
potential topical
4
topical dna
4
vaccines adjuvanted
4
adjuvanted cytokines
4

Similar Publications

Background: The common APOE2/E3/E4 polymorphism, the strongest risk factor for Alzheimer's disease (AD), is determined by two-site haplotypes at codons 112 (Cys>Arg) and 158 (Arg>Cys), resulting into six genotypes. Due to strong linkage disequilibrium between the two sites, 3 of the 4 expected haplotypes (E2, E3, E4) have been observed and extensively studied in relation to AD risk. Compared to the most common haplotype of E3 (Cys112 - Arg158), E4 (Arg112 - Arg 158) and E2 (Cys112 - Cys158) haplotypes are determined by a single-point mutation at codons 112 and 158, respectively.

View Article and Find Full Text PDF

Background: Synaptic degeneration is a primary neuropathological factor associated with cognitive decline in Alzheimer's disease (AD). In 2021, we generated a synaptic Polygenic Risk Score (PRS) that comprised only 8 variants within 6 synaptic genes (APOE, PICALM, BIN1, PTK2B, DLG2 and MINK1) that predicted AD with 72% accuracy in two neuropathological cohorts. This supports the hypothesis that genetic variants that regulate an individual's vulnerability to AD-related synapse degeneration could be used to identify individuals at-risk for AD prior to the appearance of clinical symptoms.

View Article and Find Full Text PDF

Background: Leishmaniasis represents a significant parasitic disease with global health implications, and the development of an affordable and effective vaccine could provide a valuable solution. This study aimed to evaluate the immunogenicity of a DNA vaccine targeting Leishmania major specifically based on the Leishmania-activated C kinase (LACK) antigen, utilizing calcium phosphate nanoparticles (CaPNs) and chitosan nanoparticles (ChitNs) as adjuvants.

Methods: Seventy female BALB/c mice, aged 4-6 wk and weighing 20-22 g, were selected and divided into five groups, each consisting of 14 mice.

View Article and Find Full Text PDF

Targeted knockdown of ATM, ATR, and PDEδ increases Gag HIV-1 VLP production in HEK293 cells.

Appl Microbiol Biotechnol

January 2025

Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, ENG4BIO, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, 08193, Barcelona, Spain.

Several strategies have been developed in recent years to improve virus-like particle (VLP)-based vaccine production processes. Among these, the metabolic engineering of cell lines has been one of the most promising approaches. Based on previous work and a proteomic analysis of HEK293 cells producing Human Immunodeficiency Virus-1 (HIV-1) Gag VLPs under transient transfection, four proteins susceptible of enhancing VLP production were identified: ataxia telangiectasia mutated (ATM), ataxia telangiectasia and rad3-related (ATR), DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and retinal rod rhodopsin-sensitive cGMP 3',5'-cyclic phosphodiesterase subunit delta (PDEδ).

View Article and Find Full Text PDF

Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!