The cellular uptake of oligomeric nucleic acid-based tools and drugs including small-interfering RNA (siRNA) represents a major technical hurdle for the biologic effectiveness and therapeutic success in vivo. Subsequent to cellular delivery it is crucial to direct siRNA to the cellular location where it enters the RNA interference pathway. Here the authors summarise evidence that functionally active siRNA represents a minor fraction in the order of 1% of total siRNA inside a given target cell. Exploiting possibilities of steering intracellular release or trafficking of siRNA bears the potential of substantially increasing the biological activity of siRNA. The recently described phosphorothioate stimulated cellular delivery of siRNA makes use of the caveolar system ending in the Golgi apparatus, which contrasts all other known delivery systems. Therefore, it represents an attractive alternative to study whether promoted intracellular release is related to increased target suppression and, thus, increased phenotypic biologic effectiveness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1517/14712598.7.10.1531 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!