Basic amino acid side chains situated in active sites may mediate critical proton transfers during an enzymatic catalytic cycle. In the case of photosynthetic water oxidation, a strong base is postulated to facilitate the deprotonation of the active site Mn4-Ca cluster, thereby allowing the otherwise thermodynamically constrained transfer of an electron away from the Mn4-Ca cluster to the oxidized redox active tyrosine radical, YZ*, generated by photosynthetic charge separation. Arginine 357 of the CP43 polypeptide may be located in the second coordination shell of the O2-evolving Mn4-Ca cluster of photosystem II (PSII) according to current structural models. An ostensibly conservative substitution mutation, CP43-357K, was investigated using polarographic and fluorescence techniques in evaluating its potential impact on S-state cycling. Cells containing the CP43-357K mutation lost their capacity for autotrophic growth and exhibited a drastic reduction in O2 evolving activity ( approximately 15% of that of the wild type) despite the fact that mutant cells contained more than 80% of the concentration of charge-separating PSII reaction centers and more than half of these contained photooxidizable Mn. Fluorescence kinetics indicated that acceptor side electron transfer, dominated by the transfer of electrons from QA- to QB, was unaffected, but the fraction of centers containing Mn clusters capable of forming the S2 state was reduced to approximately 40% of that of the wild type. Analysis of O2 yields using a bare platinum electrode indicated a severe defect in the S-state cycling properties of the mutant H2O oxidation complexes. Although O2 evolution was delayed to the third flash during a train of single-turnover saturating flashes, the pattern of O2 emission did not exhibit a discernible periodicity indicating a very high miss factor, which was estimated to be approximately 45% compared to the wild-type value of approximately 10%. On the other hand, the multiflash fluorescence measurements indicate that the yield of formation of the S2 state from S1 is diminished by approximately 20%, although this latter estimate is complicated by the presence of damaged PSII centers. Taken together, the experiments indicate that the high miss factor observed during S-state cycling is likely due to a defect in the higher S-state transitions. These results are discussed in relation to the idea that CP43-R357 may serve as a ligand to bicarbonate or as the catalytic base proposed to mediate proton-coupled electron transfer (PCET) in the higher S states of the catalytic cycle of H2O oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi701387bDOI Listing

Publication Analysis

Top Keywords

h2o oxidation
12
mn4-ca cluster
12
s-state cycling
12
arginine 357
8
357 cp43
8
cycle h2o
8
catalytic cycle
8
wild type
8
electron transfer
8
high factor
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!