The aim of this work was to test and to compare different methods reported in the literature to quantify amine and aldehyde functions on the surface of polyethylene (PE) films treated by ammonia plasma and to specify their stability against time. A low pressure ammonia plasma reactor was used to functionalize PE films with amine groups, which could be subsequently used for further immobilization of biomolecules. In order to determine the density of amine groups on the surface of treated films, various molecule probes and spectrophotometric analytical methods have been investigated. Two methods using (i) sulfosuccinimidyl 6-[3'-(2-pyridyldithio)-propionamido] hexanoate (sulfo-LC-SPDP) and (ii) 2-iminothiolane (ITL) associated with bicinchoninic acid (BCA) have been proved to be reliable and sensitive enough to estimate the surface concentration of primary amine functions. The amount of primary amino groups on the functionalized polyethylene films was found to be between 1.2 and 1.4 molecules/nm2. In a second step, the surface concentration of glutaraldehyde (GA), which is currently used as a spacer arm before immobilization of biomolecules, has been assessed: two methods were used to determine the surface density of available aldehyde functions, after the reaction of GA with the aminated polyethylene film. The concentration of GA was found to be in the same range as primary amine concentration. The influence of aging time on the density of available amino and aldehyde groups on the surfaces were evaluated under different storage conditions. The results showed that 50% of the initial density of primary amine functions remained available after storage during 6 days of the PE samples in PBS (pH 7.6) at 4 degrees C. In the case of aldehyde groups, the same percentage of the initial density (50%) remained active after storage in air at RT over a longer period, i.e., 15 days.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la701126t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!